Buzzard: Difference between revisions
Jump to navigation
Jump to search
no need for a smart redirect here Tag: New redirect |
m - parent category |
||
(9 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
'''Buzzard''' is a [[regular temperament|temperament]] that splits a tempered [[3/1|perfect twelfth (3/1)]] into four [[generator]]s of [[21/16]] subfourths, tempering out [[65536/64827]]. | |||
[[Category: | If harmonic 5 is desired, it is found by twenty-one generators octave-reduced, [[tempering out]] [[1728/1715]] and [[5120/5103]]. It extends to the [[13-limit]] by tempering out [[176/175]], [[351/350]], [[540/539]], and [[676/675]]. | ||
[[Category: | |||
[[Category: | Buzzard was named by [[Herman Miller]] in 2004<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_10541.html#10551 Yahoo! Tuning Group (Archive) | ''Names for important high-complexity temperaments'']</ref>. | ||
See [[Buzzardsmic clan #Buzzard]] and [[Buzzardsmic clan #Septimal buzzard]] for technical data. | |||
== Interval chain == | |||
In the following table, odd harmonics and subharmonics 1–21 are in '''bold'''. | |||
{| class="wikitable center-1 right-2" | |||
|- | |||
! rowspan="2" | # | |||
! rowspan="2" | Cents* | |||
! colspan="2" | Approximate ratios | |||
|- | |||
! 13-limit | |||
! 19-limit extension | |||
|- | |||
| 0 | |||
| 0.00 | |||
| '''1/1''' | |||
| | |||
|- | |||
| 1 | |||
| 475.68 | |||
| '''21/16''' | |||
| | |||
|- | |||
| 2 | |||
| 951.35 | |||
| 26/15 | |||
| 19/11 | |||
|- | |||
| 3 | |||
| 227.03 | |||
| '''8/7''' | |||
| | |||
|- | |||
| 4 | |||
| 702.70 | |||
| '''3/2''' | |||
| | |||
|- | |||
| 5 | |||
| 1178.38 | |||
| 63/32, 160/81 | |||
| | |||
|- | |||
| 6 | |||
| 454.06 | |||
| 13/10 | |||
| | |||
|- | |||
| 7 | |||
| 929.73 | |||
| 12/7 | |||
| | |||
|- | |||
| 8 | |||
| 205.41 | |||
| '''9/8''' | |||
| | |||
|- | |||
| 9 | |||
| 681.08 | |||
| 40/27 | |||
| | |||
|- | |||
| 10 | |||
| 1156.76 | |||
| 35/18, 39/20, 96/49 | |||
| | |||
|- | |||
| 11 | |||
| 432.44 | |||
| 9/7 | |||
| | |||
|- | |||
| 12 | |||
| 908.11 | |||
| 22/13, 27/16 | |||
| | |||
|- | |||
| 13 | |||
| 183.79 | |||
| 10/9 | |||
| | |||
|- | |||
| 14 | |||
| 659.46 | |||
| 35/24 | |||
| 19/13 | |||
|- | |||
| 15 | |||
| 1135.14 | |||
| 27/14 | |||
| | |||
|- | |||
| 16 | |||
| 410.82 | |||
| 33/26 | |||
| 19/15 | |||
|- | |||
| 17 | |||
| 886.49 | |||
| 5/3 | |||
| | |||
|- | |||
| 18 | |||
| 162.17 | |||
| 11/10 | |||
| | |||
|- | |||
| 19 | |||
| 637.84 | |||
| 13/9 | |||
| | |||
|- | |||
| 20 | |||
| 1113.52 | |||
| 40/21 | |||
| 19/10 | |||
|- | |||
| 21 | |||
| 389.20 | |||
| '''5/4''' | |||
| | |||
|- | |||
| 22 | |||
| 864.87 | |||
| 33/20 | |||
| 28/17 | |||
|- | |||
| 23 | |||
| 140.55 | |||
| 13/12 | |||
| | |||
|- | |||
| 24 | |||
| 616.22 | |||
| 10/7 | |||
| | |||
|- | |||
| 25 | |||
| 1091.90 | |||
| '''15/8''' | |||
| '''32/17''' | |||
|- | |||
| 26 | |||
| 367.58 | |||
| 26/21 | |||
| 21/17 | |||
|- | |||
| 27 | |||
| 843.25 | |||
| '''13/8''' | |||
| | |||
|- | |||
| 28 | |||
| 118.93 | |||
| 15/14 | |||
| | |||
|} | |||
<nowiki/>* In 13-limit CWE tuning | |||
== Chords == | |||
{{Main| Chords of buzzard }} | |||
== Notes == | |||
[[Category:Buzzard| ]] <!-- main article --> | |||
[[Category:Rank-2 temperaments]] | |||
[[Category:Vulture family]] | |||
[[Category:Orwellismic temperaments]] | |||
[[Category:Hemifamity temperaments]] |
Latest revision as of 13:53, 28 April 2025
Buzzard is a temperament that splits a tempered perfect twelfth (3/1) into four generators of 21/16 subfourths, tempering out 65536/64827.
If harmonic 5 is desired, it is found by twenty-one generators octave-reduced, tempering out 1728/1715 and 5120/5103. It extends to the 13-limit by tempering out 176/175, 351/350, 540/539, and 676/675.
Buzzard was named by Herman Miller in 2004[1].
See Buzzardsmic clan #Buzzard and Buzzardsmic clan #Septimal buzzard for technical data.
Interval chain
In the following table, odd harmonics and subharmonics 1–21 are in bold.
# | Cents* | Approximate ratios | |
---|---|---|---|
13-limit | 19-limit extension | ||
0 | 0.00 | 1/1 | |
1 | 475.68 | 21/16 | |
2 | 951.35 | 26/15 | 19/11 |
3 | 227.03 | 8/7 | |
4 | 702.70 | 3/2 | |
5 | 1178.38 | 63/32, 160/81 | |
6 | 454.06 | 13/10 | |
7 | 929.73 | 12/7 | |
8 | 205.41 | 9/8 | |
9 | 681.08 | 40/27 | |
10 | 1156.76 | 35/18, 39/20, 96/49 | |
11 | 432.44 | 9/7 | |
12 | 908.11 | 22/13, 27/16 | |
13 | 183.79 | 10/9 | |
14 | 659.46 | 35/24 | 19/13 |
15 | 1135.14 | 27/14 | |
16 | 410.82 | 33/26 | 19/15 |
17 | 886.49 | 5/3 | |
18 | 162.17 | 11/10 | |
19 | 637.84 | 13/9 | |
20 | 1113.52 | 40/21 | 19/10 |
21 | 389.20 | 5/4 | |
22 | 864.87 | 33/20 | 28/17 |
23 | 140.55 | 13/12 | |
24 | 616.22 | 10/7 | |
25 | 1091.90 | 15/8 | 32/17 |
26 | 367.58 | 26/21 | 21/17 |
27 | 843.25 | 13/8 | |
28 | 118.93 | 15/14 |
* In 13-limit CWE tuning