Lumatone mapping for 15edo: Difference between revisions
Jump to navigation
Jump to search
ArrowHead294 (talk | contribs) mNo edit summary |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
{{Lumatone mapping intro}} | {{Lumatone mapping intro}} | ||
== [[Porcupine]] == | |||
{{Lumatone EDO mapping|n=15|start=0|xstep=2|ystep=-1}} | {{Lumatone EDO mapping|n=15|start=0|xstep=2|ystep=-1}} | ||
== [[Blackwood]] == | |||
{{Lumatone EDO mapping|n=15|start=13|xstep=3|ystep=-1}} | {{Lumatone EDO mapping|n=15|start=13|xstep=3|ystep=-1}} | ||
== [[Hanson]] == | |||
{{Lumatone EDO mapping|n=15|start=9|xstep=4|ystep=-1}} | {{Lumatone EDO mapping|n=15|start=9|xstep=4|ystep=-1}} | ||
{{Navbox Lumatone}} | {{Navbox Lumatone}} |
Revision as of 14:35, 23 March 2025
There are many conceivable ways to map 15edo onto the onto the Lumatone keyboard. However, it has 3 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them.
Porcupine

0
2
1
3
5
7
9
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
0
2
4
6
8
10
12
14
1
3
5
7
9
11
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
2
4
6
8
10
12
14
1
3
5
7
9
11
13
9
11
13
0
2
4
6
8
10
12
14
14
1
3
5
7
9
11
13
6
8
10
12
14
11
13
Blackwood

13
1
0
3
6
9
12
14
2
5
8
11
14
2
5
1
4
7
10
13
1
4
7
10
13
1
0
3
6
9
12
0
3
6
9
12
0
3
6
9
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
8
11
14
2
5
8
11
14
2
5
8
11
14
2
4
7
10
13
1
4
7
10
13
1
4
12
0
3
6
9
12
0
3
8
11
14
2
5
1
4
Hanson

9
13
12
1
5
9
13
11
0
4
8
12
1
5
9
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
12
1
5
9
13
2
6
10
14
3
7
11
0
4
12
1
5
9
13
2
6
10
14
3
7
8
12
1
5
9
13
2
6
8
12
1
5
9
4
8