467edo: Difference between revisions
Review |
m changed EDO intro to ED intro |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
467edo is [[consistent]] to the [[9-odd-limit]] with [[harmonic]]s [[3/1|3]], [[5/1|5]], and [[7/1|7]] all tuned flat. Using the [[patent val]], the equal temperament [[tempering out|tempers out]] [[4375/4374]], [[2100875/2097152]], 5250987/5242880, and {{monzo| -16 4 9 -4 }} in the 7-limit. | 467edo is [[consistent]] to the [[9-odd-limit]] with [[harmonic]]s [[3/1|3]], [[5/1|5]], and [[7/1|7]] all tuned flat. Using the [[patent val]], the equal temperament [[tempering out|tempers out]] [[4375/4374]], [[2100875/2097152]], 5250987/5242880, and {{monzo| -16 4 9 -4 }} in the 7-limit. It [[support]]s [[mitonic]] and [[counterkleismic]], supplying the [[optimal patent val]] for the latter. | ||
In the 11-limit, the 467e [[val]] scores much better than the [[patent val]]. The 467e val tempers out 1375/1372, 24057/24010, 35937/35840, and 41503/41472, and in the 13-limit, [[625/624]], [[729/728]], [[1716/1715]], and [[2200/2197]]. The patent val tempers out [[540/539]], [[6250/6237]], 12005/11979, and 14700/14641, and in the 13-limit, 625/624, 729/728, and [[2080/2079]]. | In the 11-limit, the 467e [[val]] scores much better than the [[patent val]]. The 467e val tempers out 1375/1372, 24057/24010, 35937/35840, and 41503/41472, and in the 13-limit, [[625/624]], [[729/728]], [[1716/1715]], and [[2200/2197]]. The patent val tempers out [[540/539]], [[6250/6237]], 12005/11979, and 14700/14641, and in the 13-limit, 625/624, 729/728, and [[2080/2079]]. | ||
In the 17-limit, it supplies the optimal patent val for the rank-6 temperament tempering out [[375/374]]. | |||
=== Odd harmonics === | === Odd harmonics === | ||
Line 17: | Line 17: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
! [[TE simple badness|Relative]] (%) | ! [[TE simple badness|Relative]] (%) | ||
Line 29: | Line 30: | ||
| {{monzo| -740 467 }} | | {{monzo| -740 467 }} | ||
| {{mapping| 467 740 }} | | {{mapping| 467 740 }} | ||
| 0.1439 | | +0.1439 | ||
| 0.1439 | | 0.1439 | ||
| 5.38 | | 5.38 | ||
Line 36: | Line 37: | ||
| {{monzo| -36 11 8 }}, {{monzo| -16 35 -17 }} | | {{monzo| -36 11 8 }}, {{monzo| -16 35 -17 }} | ||
| {{mapping| 467 740 1084 }} | | {{mapping| 467 740 1084 }} | ||
| 0.2215 | | +0.2215 | ||
| 0.1608 | | 0.1608 | ||
| 6.02 | | 6.02 | ||
Line 43: | Line 44: | ||
| 4375/4374, 2100875/2097152, {{monzo| -16 4 9 -4 }} | | 4375/4374, 2100875/2097152, {{monzo| -16 4 9 -4 }} | ||
| {{mapping| 467 740 1084 1311 }} | | {{mapping| 467 740 1084 1311 }} | ||
| 0.1741 | | +0.1741 | ||
| 0.1617 | | 0.1617 | ||
| 6.05 | | 6.05 | ||
Line 50: | Line 51: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | |- | ||
! Periods<br />per 8ve | |||
! Generator* | ! Generator* | ||
! Cents* | ! Cents* | ||
! Associated<br> | ! Associated<br />ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 69: | Line 71: | ||
| [[Counterhanson]] | | [[Counterhanson]] | ||
|} | |} | ||
<nowiki>* | <nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | ||
== Music == | |||
; [[Francium]] | |||
* "Cuckoo Mackerel" from ''Cursed Cuckoo Creations'' (2024) – [https://open.spotify.com/track/6d9Ip2EuZkqQdx0OUJkw86 Spotify] | [https://francium223.bandcamp.com/track/cuckoo-mackerel Bandcamp] | [https://www.youtube.com/watch?v=MjgQWmcKQB4 YouTube] | |||
* "livemywarmlive" from ''albumwithoutspaces'' (2024) – [https://open.spotify.com/track/4jwETd5M7kbxkcR1TOflMk Spotify] | [https://francium223.bandcamp.com/track/livemywarmlive Bandcamp] | [https://www.youtube.com/watch?v=G2CH958nhOk YouTube] – counterkleismic[19] in 467edo tuning | |||
[[Category:Counterkleismic]] | |||
[[Category:Listen]] | |||
[[Category:Ursulismic]] |
Latest revision as of 06:14, 21 February 2025
← 466edo | 467edo | 468edo → |
467 equal divisions of the octave (abbreviated 467edo or 467ed2), also called 467-tone equal temperament (467tet) or 467 equal temperament (467et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 467 equal parts of about 2.57 ¢ each. Each step represents a frequency ratio of 21/467, or the 467th root of 2.
Theory
467edo is consistent to the 9-odd-limit with harmonics 3, 5, and 7 all tuned flat. Using the patent val, the equal temperament tempers out 4375/4374, 2100875/2097152, 5250987/5242880, and [-16 4 9 -4⟩ in the 7-limit. It supports mitonic and counterkleismic, supplying the optimal patent val for the latter.
In the 11-limit, the 467e val scores much better than the patent val. The 467e val tempers out 1375/1372, 24057/24010, 35937/35840, and 41503/41472, and in the 13-limit, 625/624, 729/728, 1716/1715, and 2200/2197. The patent val tempers out 540/539, 6250/6237, 12005/11979, and 14700/14641, and in the 13-limit, 625/624, 729/728, and 2080/2079.
In the 17-limit, it supplies the optimal patent val for the rank-6 temperament tempering out 375/374.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.46 | -0.87 | -0.09 | -0.91 | +1.14 | -0.27 | +1.24 | +0.40 | +0.56 | -0.55 | +1.28 |
Relative (%) | -17.7 | -34.0 | -3.5 | -35.5 | +44.5 | -10.5 | +48.2 | +15.5 | +21.8 | -21.2 | +49.7 | |
Steps (reduced) |
740 (273) |
1084 (150) |
1311 (377) |
1480 (79) |
1616 (215) |
1728 (327) |
1825 (424) |
1909 (41) |
1984 (116) |
2051 (183) |
2113 (245) |
Subsets and supersets
467edo is the 91st prime edo.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-740 467⟩ | [⟨467 740]] | +0.1439 | 0.1439 | 5.38 |
2.3.5 | [-36 11 8⟩, [-16 35 -17⟩ | [⟨467 740 1084]] | +0.2215 | 0.1608 | 6.02 |
2.3.5.7 | 4375/4374, 2100875/2097152, [-16 4 9 -4⟩ | [⟨467 740 1084 1311]] | +0.1741 | 0.1617 | 6.05 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 71\467 | 182.441 | 10/9 | Mitonic |
1 | 123\467 | 316.060 | 6/5 | Counterhanson |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct