1178edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
m Partial undo
ArrowHead294 (talk | contribs)
mNo edit summary
Line 9: Line 9:


=== Subsets and supersets ===
=== Subsets and supersets ===
Since 1178 = {{factorization|1178}}, 1178edo is notable for containing both 19 and 31. Its subset edos are {{EDOs| 2, 19, 31, 38, 62, and 589 }}.
Since 1178 factors into {{factorization|1178}}, 1178edo is notable for containing both 19 and 31. Its subset edos are {{EDOs| 2, 19, 31, 38, 62, and 589 }}.


== Regular temperament properties ==
== Regular temperament properties ==
Line 61: Line 61:
| 2500/2499, 3025/3024, 4225/4224, 4375/4374, 4914/4913, 14875/14872
| 2500/2499, 3025/3024, 4225/4224, 4375/4374, 4914/4913, 14875/14872
| {{mapping| 1178 1867 2735 3307 4075 4359 4815 }}
| {{mapping| 1178 1867 2735 3307 4075 4359 4815 }}
| 0.0403
| +0.0403
| 0.0327
| 0.0327
| 3.21
| 3.21
Line 68: Line 68:
| 2500/2499, 3025/3024, 3250/3249, 4200/4199, 4225/4224, 4375/4374, 4914/4913
| 2500/2499, 3025/3024, 3250/3249, 4200/4199, 4225/4224, 4375/4374, 4914/4913
| {{mapping| 1178 1867 2735 3307 4075 4359 4815 5004 }}
| {{mapping| 1178 1867 2735 3307 4075 4359 4815 5004 }}
| 0.0370
| +0.0370
| 0.0318
| 0.0318
| 3.12
| 3.12
Line 113: Line 113:
| [[Hemienneadecal]]
| [[Hemienneadecal]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


== Music ==
== Music ==
; [[Eliora]]
; [[Eliora]]
* [https://www.youtube.com/watch?v=c9e7MTsIDc4 ''Listening''] (2023) &ndash; 217 & 1178 and enneadecal in 1178edo tuning
* [https://www.youtube.com/watch?v=c9e7MTsIDc4 ''Listening''] (2023) – {{nowrap|217 &amp; 1178}} and enneadecal in 1178edo tuning


[[Category:Enneadecal]]
[[Category:Enneadecal]]

Revision as of 19:43, 15 January 2025

← 1177edo 1178edo 1179edo →
Prime factorization 2 × 19 × 31
Step size 1.01868 ¢ 
Fifth 689\1178 (701.868 ¢)
Semitones (A1:m2) 111:89 (113.1 ¢ : 90.66 ¢)
Consistency limit 21
Distinct consistency limit 21

Template:EDO intro

Theory

1178edo is a very strong 19-limit system, and is a zeta peak, integral and gap edo. It is also distinctly consistent through to the 21-odd-limit, and is the first edo past 742 with a lower 19-limit relative error. A basis for its 19-limit commas consists of 2500/2499, 3025/3024, 3250/3249, 4200/4199, 4225/4224, 4375/4374, and 4914/4913. It supports and provides a great tuning for semihemienneadecal.

Prime harmonics

Approximation of prime harmonics in 1178edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.087 -0.236 -0.065 -0.214 -0.120 -0.032 -0.060 +0.249 +0.304 -0.044
Relative (%) +0.0 -8.6 -23.1 -6.4 -21.0 -11.8 -3.1 -5.9 +24.4 +29.8 -4.3
Steps
(reduced)
1178
(0)
1867
(689)
2735
(379)
3307
(951)
4075
(541)
4359
(825)
4815
(103)
5004
(292)
5329
(617)
5723
(1011)
5836
(1124)

Subsets and supersets

Since 1178 factors into 2 × 19 × 31, 1178edo is notable for containing both 19 and 31. Its subset edos are 2, 19, 31, 38, 62, and 589.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-1867 1178 [1178 1867]] +0.0276 0.0276 2.71
2.3.5 [-14 -19-19, [-99 61 1 [1178 1867 2735]] +0.0522 0.0415 4.07
2.3.5.7 4375/4374, 703125/702464, [-52 -5 -2 23 [1178 1867 2735 3307]] +0.0450 0.0380 3.73
2.3.5.7.11 3025/3024, 4375/4374, 234375/234256, [-27 3 -4 10 1 [1178 1867 2735 3307 4075]] +0.0484 0.0347 3.41
2.3.5.7.11.13 3025/3024, 4225/4224, 4375/4374, 78125/78078, 1664000/1663893 [1178 1867 2735 3307 4075 4359]] +0.0457 0.0322 3.16
2.3.5.7.11.13.17 2500/2499, 3025/3024, 4225/4224, 4375/4374, 4914/4913, 14875/14872 [1178 1867 2735 3307 4075 4359 4815]] +0.0403 0.0327 3.21
2.3.5.7.11.13.17.19 2500/2499, 3025/3024, 3250/3249, 4200/4199, 4225/4224, 4375/4374, 4914/4913 [1178 1867 2735 3307 4075 4359 4815 5004]] +0.0370 0.0318 3.12

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 337\1178 343.29 8000/6561 Raider
19 489\1178
(7\1178)
498.13
(7.13)
4/3
(225/224)
Enneadecal
31 581\1178
(11\1178)
591.851
(11.205)
936/665
(?)
217 & 1178
38 260\1178
(12\1178)
264.86
(12.22)
500/429
(144/143)
Semihemienneadecal
38 489\1178
(7\1178)
498.13
(7.13)
4/3
(225/224)
Hemienneadecal

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Music

Eliora
  • Listening (2023) – 217 & 1178 and enneadecal in 1178edo tuning