User:Moremajorthanmajor/2L 1s (perfect fourth-equivalent): Difference between revisions
(10 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
[[Basic]] diatonic is in [[5ed4/3]], which is a very good fourth-based equal tuning similar to [[12edo]]. | [[Basic]] diatonic is in [[5ed4/3]], which is a very good fourth-based equal tuning similar to [[12edo]]. | ||
==Notation== | ==Notation== | ||
There are 6 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple, quintuple or sextuple fourth (minor seventh, tenth, thirteenth or sixteenth or diminished nineteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used. | There are 6 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4 and a fourth has too few notes for a structure analogous to the major scale, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple, quintuple or sextuple fourth (minor seventh, tenth, thirteenth or sixteenth or diminished nineteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used. | ||
{| class="wikitable" | {| class="wikitable" | ||
|+Cents | |+Cents | ||
! | !Notation | ||
!Supersoft | !Supersoft | ||
!Soft | !Soft | ||
Line 20: | Line 20: | ||
|- | |- | ||
!Fourth | !Fourth | ||
!~11ed4/3 | !~11ed4/3 | ||
!~8ed4/3 | !~8ed4/3 | ||
Line 29: | Line 28: | ||
!~9ed4/3 | !~9ed4/3 | ||
|- | |- | ||
|F/C/G ut# | |||
Do#, Sol# | |||
د#, | |||
ص# | |||
| | |||
|1\11, 46.154 | |1\11, 46.154 | ||
|1\8, 63.158 | |1\8, 63.158 | ||
Line 51: | Line 42: | ||
|3\9, 163.636 | |3\9, 163.636 | ||
|- | |- | ||
| Reb, Lab | | G/D/A reb | ||
Reb, Lab | |||
رb, لb | |||
|3\11, 138.462 | |3\11, 138.462 | ||
|2\8, 126.316 | |2\8, 126.316 | ||
Line 61: | Line 53: | ||
|1\9, 54.545 | |1\9, 54.545 | ||
|- | |- | ||
|''' | |'''G/D/A re''' | ||
'''Re, La''' | |||
'''ر, ل''' | |||
|'''4\11,''' '''184.615''' | |'''4\11,''' '''184.615''' | ||
|'''3\8,''' '''189.474''' | |'''3\8,''' '''189.474''' | ||
Line 72: | Line 65: | ||
|'''4\9,''' '''218.182''' | |'''4\9,''' '''218.182''' | ||
|- | |- | ||
|Re#, La# | |G/D/A re# | ||
Re#, La# | |||
ر,# ل# | |||
|5\11, 230.769 | |5\11, 230.769 | ||
|4\8, 252.632 | | rowspan="2" |4\8, 252.632 | ||
|7\13, 270.967 | |7\13, 270.967 | ||
| | |3\5, 300 | ||
| 8\12, 331.034 | | 8\12, 331.034 | ||
|5\7, 352.941 | |5\7, 352.941 | ||
|7\9, 381.818 | |7\9, 381.818 | ||
|- | |- | ||
|''' | |A/E/B mibb | ||
Mibb, Sibb | |||
مbb,تbb | |||
|6\11, 276.923 | |||
|6\13, 232.258 | |||
|2\5, 200 | |||
|4\12, 165.517 | |||
|2\7, 141.176 | |||
|2\9, 109.091 | |||
|- | |||
|'''A/E/B mib''' | |||
'''Mib, Sib''' | |||
'''مb,تb''' | |||
|'''7\11,''' '''323.077''' | |'''7\11,''' '''323.077''' | ||
|'''5\8,''' '''315.789''' | |'''5\8,''' '''315.789''' | ||
|'''8\13,''' '''309.677''' | |'''8\13,''' '''309.677''' | ||
|'''3\5,''' '''300''' | |||
|'''7\12,''' '''289.655''' | |'''7\12,''' '''289.655''' | ||
|'''4\7,''' '''282.353''' | |'''4\7,''' '''282.353''' | ||
|'''5\9,''' '''272.727''' | |'''5\9,''' '''272.727''' | ||
|- | |- | ||
|Mi, Si | |A/E/B mi | ||
Mi, Si | |||
م, ت | |||
|8\11, 369.231 | |8\11, 369.231 | ||
|6\8, 378.947 | |6\8, 378.947 | ||
Line 104: | Line 112: | ||
|8\9, 436.364 | |8\9, 436.364 | ||
|- | |- | ||
|Mi#, Si# | |A/E/B mi# | ||
Mi#, Si# | |||
م,#ت# | |||
|9\11, 415.385 | |9\11, 415.385 | ||
| rowspan="2" |7\8, 442.105 | | rowspan="2" |7\8, 442.105 | ||
Line 115: | Line 124: | ||
|11\9, 600 | |11\9, 600 | ||
|- | |- | ||
|Dob, Solb | |F/C/G utb | ||
Dob, Solb | |||
دb, | |||
صb | |||
|10\11, 461.538 | |10\11, 461.538 | ||
|11\13, 425.806 | |11\13, 425.806 | ||
Line 125: | Line 137: | ||
|6\9, 327.273 | |6\9, 327.273 | ||
|- | |- | ||
!Do, Sol | !F/C/G ut | ||
Do, Sol | |||
د, ص | |||
!'''11\11,''' '''507.692''' | !'''11\11,''' '''507.692''' | ||
!'''8\8,''' '''505.263''' | !'''8\8,''' '''505.263''' | ||
Line 135: | Line 148: | ||
!'''7\7,''' '''494.118''' | !'''7\7,''' '''494.118''' | ||
!'''9\9,''' '''490.909''' | !'''9\9,''' '''490.909''' | ||
|} | |||
{| class="wikitable" | |||
|+Cents | |||
! colspan="2" |Notation | |||
!Supersoft | |||
!Soft | |||
!Semisoft | |||
!Basic | |||
!Semihard | |||
!Hard | |||
!Superhard | |||
|- | |- | ||
| | ! colspan="2" |Seventh | ||
!~11ed4/3 | |||
!~8ed4/3 | |||
!~13ed4/3 | |||
!~5ed4/3 | |||
!~12ed4/3 | |||
!~7ed4\3 | |||
!~9ed4/3 | |||
|- | |- | ||
!Mixolydian | |||
!Dorian | |||
! | |||
! | |||
! | |||
! | |||
! | |||
! | |||
! | |||
|- | |- | ||
| | | F/C/G ut# | ||
| | Sol# | ||
| | ص# | ||
| | |G/D/A re# | ||
| | Re# | ||
| | |||
| | ر# | ||
| | |1\11, 46.154 | ||
| | |1\8, 63.158 | ||
|2\13, 77.419 | |||
| rowspan="2" |1\5, 100 | |||
| 3\12, 124.138 | |||
|2\7, 141.176 | |||
|3\9, 163.636 | |||
|- | |- | ||
| | |G/D/A reb | ||
| | Lab | ||
| | لb | ||
| | |A/E/B mib | ||
| | Mib | ||
| | |||
مb | |||
| | |3\11, 138.462 | ||
| | |2\8, 126.316 | ||
|3\13, 116.129 | |||
|2\12, 82.759 | |||
|1\7, 70.588 | |||
|1\9, 54.545 | |||
|- | |- | ||
|''' | |'''G/D/A re''' | ||
|''' | '''La''' | ||
|''' | ل | ||
|''' | |'''A/E/B mi''' | ||
|''' | '''Mi''' | ||
|''' | |||
|''' | م | ||
|''' | |'''4\11,''' '''184.615''' | ||
|'''3\8,''' '''189.474''' | |||
|'''5\13,''' '''193.548''' | |||
|'''2\5,''' '''200''' | |||
|'''5\12,''' '''206.897''' | |||
|'''3\7,''' '''211.765''' | |||
|'''4\9,''' '''218.182''' | |||
|- | |- | ||
| | |G/D/A re# | ||
|Mi | La# | ||
| | ل# | ||
| | | A/E/B mi# | ||
| | Mi# | ||
| | |||
| | م# | ||
| | |5\11, 230.769 | ||
| | | rowspan="2" |4\8, 252.632 | ||
| 7\13, 270.967 | |||
|3\5, 300 | |||
|8\12, 331.034 | |||
|5\7, 352.941 | |||
|7\9, 381.818 | |||
|- | |- | ||
| | |A/E/B mibb | ||
| | Sibb | ||
| | تbb | ||
| | |B/F/C fab | ||
Fab | |||
| | |||
| | فb | ||
| | |6\11, 276.923 | ||
| | |6\13, 232.258 | ||
|2\5, 200 | |||
|4\12, 165.517 | |||
|2\7, 141.176 | |||
|2\9, 109.091 | |||
|- | |- | ||
| | |'''A/E/B mib''' | ||
| | '''Sib''' | ||
| | |||
| | تb | ||
| | |'''B/F/C fa''' | ||
| | '''Fa''' | ||
| | |||
| | '''ف''' | ||
| | |'''7\11,''' '''323.077''' | ||
|'''5\8,''' '''315.789''' | |||
|'''8\13,''' '''309.677''' | |||
|'''3\5,''' '''300''' | |||
|'''7\12,''' '''289.655''' | |||
|'''4\7,''' '''282.353''' | |||
|'''5\9,''' '''272.727''' | |||
|- | |- | ||
|A/E/B mi | |||
Si | |||
ت | |||
|B/F/C fa# | |||
Fa# | |||
ف# | |||
| 8\11, 369.231 | |||
|6\8, 378.947 | |||
|10\13, 387.097 | |||
|4\5, 400 | |||
|10\12, 413.793 | |||
|6\7, 423.529 | |||
|8\9, 436.364 | |||
|- | |- | ||
|A/E/B mi# | |||
Si# | |||
ت# | |||
|B/F/C fax | |||
Fax | |||
فx | |||
|9\11, 415.385 | |||
| rowspan="2" |7\8, 442.105 | |||
|12\13, 464.516 | |||
|5\5, 500 | |||
|13\12, 537.069 | |||
|8\7, 564.705 | |||
|11\9, 600 | |||
|- | |- | ||
|G | | B/F/C fab | ||
Dob | |||
| | |||
| | دb | ||
|C/G/D solb | |||
| | Solb | ||
| | |||
| | صb | ||
| | |10\11, 461.538 | ||
|11\13, 425.806 | |||
|4\5, 400 | |||
|9\12, 372.414 | |||
|5\7, 352.941 | |||
|6\9, 327.273 | |||
|- | |- | ||
!B/F/C fa | |||
Do | |||
د | |||
!C/G/D sol | |||
Sol | |||
ص | |||
!'''11\11,''' '''507.692''' | |||
!'''8\8,''' '''505.263''' | |||
!'''13\13,''' '''503.226''' | |||
!5\5, 500 | |||
!'''12\12,''' '''496.552''' | |||
!'''7\7,''' '''494.118''' | |||
!'''9\9,''' '''490.909''' | |||
|- | |- | ||
| | |B/F/C fa# | ||
| | Do# | ||
| | |||
| | د# | ||
| | | C/G/D sol# | ||
| | Sol# | ||
| | |||
| | ص# | ||
| | |12\11, 553.846 | ||
|9\8, 568.421 | |||
|15\13, 580.645 | |||
| rowspan="2" |6\5, 600 | |||
|15\12, 620.690 | |||
|9\7, 635.294 | |||
|12\9, 654.545 | |||
|- | |- | ||
| | |C/G/D solb | ||
Reb | |||
| | |||
| | رb | ||
| | |D/A/E lab | ||
| | Lab | ||
| | لb | ||
| | |14\11, 646.154 | ||
|10\8, 631.579 | |||
|16\13, 619.355 | |||
|14\12, 579.310 | |||
|8\7, 564.706 | |||
|10\9, 545.455 | |||
|- | |- | ||
|''' | |'''C/G/D sol''' | ||
|''' | '''Re''' | ||
|''' | |||
|''' | ر | ||
|''' | |'''D/A/E la''' | ||
|'''7\12,''' ''' | '''La''' | ||
|''' | |||
|''' | ل | ||
|'''15\11,''' '''692.308''' | |||
|'''11\8''' '''694.737''' | |||
|'''18\13,''' '''696.774''' | |||
|'''7\5,''' '''700''' | |||
|'''17\12,''' '''703.448''' | |||
|'''10\7,''' '''705.882''' | |||
|'''13\9,''' '''709.091''' | |||
|- | |- | ||
|A | |C/G/D sol# | ||
Re# | |||
| | |||
| | د# | ||
| | |D/A/E la# | ||
| | La# | ||
| | |||
| | ل# | ||
| | |16\11, 738.462 | ||
|12\8, 757.895 | |||
|20\13, 774.294 | |||
| rowspan="2" |'''8\5,''' '''800''' | |||
|20\12, 827.586 | |||
|12\7, 847.059 | |||
|16\9, 872.727 | |||
|- | |- | ||
|A | |'''D/A/E lab''' | ||
'''Mib''' | |||
| | |||
| | مb | ||
| | |'''E/B/F síb''' | ||
| | '''Sib''' | ||
| | تb | ||
| | |'''18\11,''' '''830.769''' | ||
|'''13\8,''' '''821.053''' | |||
|'''21\13,''' '''812.903''' | |||
|'''19\12,''' '''786.207''' | |||
|'''11\7,''' '''776.471''' | |||
|'''14\9,''' '''763.636''' | |||
|- | |- | ||
| | |D/A/E la | ||
| | Mi | ||
| | |||
| | م | ||
| | |E/B/F sí | ||
| | Si | ||
| | |||
| | ت | ||
|19\11, 876.923 | |||
|14\8, 884.211 | |||
|23\13, 890.323 | |||
|9\5, 900 | |||
|22\12, 910.345 | |||
|13\7, 917.647 | |||
|17\9, 927.727 | |||
|- | |- | ||
|D/A/E la# | |||
Mi# | |||
م# | |||
|E/B/F sí# | |||
Si# | |||
ت# | |||
|20\11, 923.077 | |||
| rowspan="2" |15\8, 947.378 | |||
|25\13, 967.742 | |||
|10\5, 1000 | |||
|25\12, 1034.483 | |||
|15\7, 1058.824 | |||
|20\9, 1090.909 | |||
|- | |- | ||
| | |F/C/G utb | ||
| | Solb | ||
| | |||
صb | |||
| | |G/D/A reb | ||
| | Reb | ||
| | |||
| | رb | ||
| | |21\11, 969.231 | ||
|24\13, 929.033 | |||
|9\5, 900 | |||
|21\12, 868.966 | |||
|11\7, 776.471 | |||
|15\9, 818.182 | |||
|- | |- | ||
!F/C/G ut | |||
Sol | |||
ص | |||
!G/D/A re | |||
Re | |||
ر | |||
!22\11, 1015.385 | |||
! 16\8, 1010.526 | |||
! 26\13, 1006.452 | |||
!10\5, 1000 | |||
!24\12, 993.103 | |||
!14\7, 988.235 | |||
!18\9, 981.818 | |||
|} | |||
{| class="wikitable" | |||
!Notation | |||
!Supersoft | |||
!Soft | |||
!Semisoft | |||
!Basic | |||
!Semihard | |||
!Hard | |||
!Superhard | |||
|- | |- | ||
!Mahur | |||
!~11ed4/3 | |||
!~8ed4/3 | |||
!~13ed4/3 | |||
!~5ed4/3 | |||
!~12ed4/3 | |||
!~7ed4\3 | |||
! ~9ed4/3 | |||
|- | |- | ||
| | |G# | ||
|1\11, 46.154 | |||
| | |1\8, 63.158 | ||
| | |2\13, 77.419 | ||
| | | rowspan="2" |1\5, 100 | ||
| rowspan="2" | | |3\12, 124.138 | ||
| | |2\7, 141.176 | ||
| | |3\9, 163.636 | ||
| | |||
|- | |- | ||
| | |Jf, Af | ||
| | |3\11, 138.462 | ||
|2\8, 126.316 | |||
| | |3\13, 116.129 | ||
| | |2\12, 82.759 | ||
| | |1\7, 70.588 | ||
| | |1\9, 54.545 | ||
| | |||
|- | |- | ||
| | |'''J, A''' | ||
| | |'''4\11,''' '''184.615''' | ||
|'''3\8,''' '''189.474''' | |||
| | |'''5\13,''' '''193.548''' | ||
| | |'''2\5,''' '''200''' | ||
| | |'''5\12,''' '''206.897''' | ||
| | |'''3\7,''' '''211.765''' | ||
| | |'''4\9,''' '''218.182''' | ||
| | |||
|- | |- | ||
| | | J#, A# | ||
|5 | |5\11, 230.769 | ||
|4\8, 252.632 | |||
| | |7\13, 270.968 | ||
| | | rowspan="2" |'''3\5,''' '''300''' | ||
| | |8\12, 331.034 | ||
| | |5\7, 352.941 | ||
| | |7\9, 381.818 | ||
| | |||
|- | |- | ||
| | |'''Af, Bf''' | ||
| | |'''7\11,''' '''323.077''' | ||
|'''5\8,''' '''315.789''' | |||
| | |'''8\13,''' '''309.677''' | ||
| | |'''7\12,''' '''289.655''' | ||
| | |'''4\7,''' '''282.353''' | ||
| | |'''5\9,''' '''272.727''' | ||
| | |||
|- | |- | ||
|A, B | |||
|8\11, 369.231 | |||
|6\8, 378.947 | |||
|10\13, 387.097 | |||
|4\5, 400 | |||
|10\12, 413.793 | |||
|6\7, 423.529 | |||
|8\9, 436.364 | |||
|- | |- | ||
| | |A#, B# | ||
| | |9\11, 415.385 | ||
| rowspan="2" |7\8, 442.105 | |||
| | |12\13, 464.516 | ||
| | |5\5, 500 | ||
| | |13\12, 537.069 | ||
| | |8\7, 564.705 | ||
| | |11\9, 600 | ||
| | |||
|- | |- | ||
| | |Bb, Cf | ||
|10\11, 461.538 | |||
| | |11\13, 425.806 | ||
| | |4\5, 400 | ||
| | |9\12, 372.414 | ||
| | |5\7, 352.941 | ||
| | |6\9, 327.273 | ||
| | |||
|- | |- | ||
!B, C | |||
!'''11\11,''' '''507.692''' | |||
!'''8\8,''' '''505.263''' | |||
!'''13\13,''' '''503.226''' | |||
!5\5, 500 | |||
!'''12\12,''' '''496.552''' | |||
!'''7\7,''' '''494.118''' | |||
!'''9\9,''' '''490.909''' | |||
|- | |||
|B#, C# | |||
|12\11, 553.846 | |||
|9\8, 568.421 | |||
|15\13, 580.645 | |||
| rowspan="2" |6\5, 600 | |||
|15\12, 620.690 | |||
| 9\7, 635.294 | |||
| 12\9, 654.545 | |||
|- | |- | ||
| | |Cf, Qf | ||
|14\11, 646.154 | |||
| | |10\8, 631.579 | ||
| | |16\13, 619.355 | ||
| | |14\12, 579.310 | ||
| | |8\7, 564.706 | ||
| 10\9, 545.455 | |||
| | |||
| | |||
|- | |- | ||
|''' | |'''C, Q''' | ||
|''' | |'''15\11,''' '''692.308''' | ||
|''' | |'''11\8''' '''694.737''' | ||
|''' | |'''18\13,''' '''696.774''' | ||
|''' | |'''7\5,''' '''700''' | ||
|''' | |'''17\12,''' '''703.448''' | ||
|''' | |'''10\7,''' '''705.882''' | ||
|''' | |'''13\9,''' '''709.091''' | ||
|- | |- | ||
| | |C#, Q# | ||
|16\11, 738.462 | |||
| | |12\8, 757.895 | ||
| | |20\13, 774.194 | ||
| | | rowspan="2" |'''8\5,''' '''800''' | ||
| | |20\12, 827.586 | ||
| | |12\7, 847.059 | ||
| | |16\9, 872.727 | ||
| | |||
|- | |- | ||
| | |'''Qf, Df''' | ||
|'''18\11,''' '''830.769''' | |||
| | |'''13\8,''' '''821.053''' | ||
| | |'''21\13,''' '''812.903''' | ||
| | |'''19\12,''' '''786.207''' | ||
| | |'''11\7,''' '''776.471''' | ||
|'''14\9,''' '''763.636''' | |||
| | |||
| | |||
|- | |- | ||
| | |Q, D | ||
| | |19\11, 876.923 | ||
| | |14\8, 884.211 | ||
| | |23\13, 890.323 | ||
| | |9\5, 900 | ||
| | |22\12, 910.345 | ||
| | |13\7, 917.647 | ||
| | | 17\9, 927.727 | ||
|- | |- | ||
|Q#, D# | |||
|20\11, 923.077 | |||
| rowspan="2" |15\8, 947.368 | |||
|25\13, 967.742 | |||
| 10\5, 1000 | |||
|25\12, 1034.483 | |||
| 15\7, 1058.824 | |||
| 20\9, 1090.909 | |||
|- | |- | ||
| | |Df, Sf | ||
| 21\11, 969.231 | |||
| | |24\13, 929.033 | ||
| | |9\5, 900 | ||
|21\12, 868.966 | |||
| | |11\7, 776.471 | ||
| | |15\9, 818.182 | ||
| | |||
| | |||
|- | |- | ||
!D, S | |||
!22\11, 1015.385 | |||
!16\8, 1010.526 | |||
!26\13, 1006.452 | |||
!10\5, 1000 | |||
!24\12, 993.103 | |||
!14\7, 988.235 | |||
!18\9, 981.818 | |||
|- | |- | ||
| | |D#, S# | ||
| | |23\11, 1061.538 | ||
|17\8, 1073.684 | |||
| | |28\13, 1083.871 | ||
| | | rowspan="2" |11\5, 1100 | ||
| | |27\12, 1117.241 | ||
| | |16\7, 1129.412 | ||
| | |21\9, 1145.455 | ||
| | |||
|- | |- | ||
| | |Ef | ||
|25\11, 1153.846 | |||
| | |18\8, 1136.842 | ||
| | |29\13, 1122.581 | ||
| | |26\12, 1075.862 | ||
| | |15\7, 1058.824 | ||
|19\9, 1036.364 | |||
| | |||
| | |||
|- | |- | ||
|''' | |'''E''' | ||
|''' | |'''26\11,''' '''1200''' | ||
|''' | |'''19\8,''' '''1200''' | ||
|''' | |'''31\13,''' '''1200''' | ||
|''' | |'''12\5,''' '''1200''' | ||
|''' | |'''29\12,''' '''1200''' | ||
|''' | |'''17\7,''' '''1200''' | ||
|''' | |'''22\9,''' '''1200''' | ||
|- | |- | ||
|E# | |||
|E | |27\11, 1246.154 | ||
| | |20\8, 1263.158 | ||
| | |33\13, 1277.419 | ||
| | | rowspan="2" |'''13\5,''' '''1300''' | ||
| | |32\12, 1324.138 | ||
| | |19\7, 1341.176 | ||
| | |25\9, 1363.636 | ||
| | |||
|- | |- | ||
| | |'''Ff''' | ||
| | |'''29\11,''' '''1338.462''' | ||
|'''21\8,''' '''1326.316''' | |||
| | |'''34\13,''' '''1316.129''' | ||
| | |'''31\12,''' '''1282.759''' | ||
| | |'''18\7,''' '''1270.588''' | ||
|'''23\9,''' '''1254.545''' | |||
| | |||
| | |||
|- | |- | ||
| | |F | ||
| | |30\11, 1384.615 | ||
| | |22\8, 1389.474 | ||
| | |36\13, 1393.548 | ||
| | |14\5, 1400 | ||
| | |34\12, 1406.897 | ||
| | |20\7, 1411.765 | ||
| | | 26\9, 1418.182 | ||
|- | |- | ||
|F# | |||
! | |31\11, 1430.769 | ||
! | | rowspan="2" |23\8, 1452.632 | ||
! | |38\13, 1470.968 | ||
! | |15\5, 1500 | ||
! | |37\12, 1531.034 | ||
! | |22\7, 1552.941 | ||
! | | 29\9, 1581.818 | ||
! | |- | ||
|Gf | |||
|32\11, 1476.923 | |||
|37\13, 1432.258 | |||
|14\5, 1400 | |||
|33\12, 1365.517 | |||
|19\7, 1341.176 | |||
|24\9, 1309.091 | |||
|- | |||
!G | |||
!33\11, 1523.077 | |||
!24\8, 1515.789 | |||
!39\13, 1509.677 | |||
!15\5, 1500 | |||
!36\12, 1489.655 | |||
!21\7, 1482.353 | |||
!27\9, 1472.727 | |||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
! | !Notation | ||
!Supersoft | ! Supersoft | ||
!Soft | !Soft | ||
!Semisoft | !Semisoft | ||
! Basic | !Basic | ||
!Semihard | !Semihard | ||
!Hard | !Hard | ||
!Superhard | !Superhard | ||
|- | |- | ||
! | !Bijou | ||
!~11ed4/3 | !~11ed4/3 | ||
!~8ed4/3 | ! ~8ed4/3 | ||
!~13ed4/3 | !~13ed4/3 | ||
!~5ed4/3 | !~5ed4/3 | ||
!~12ed4/3 | !~12ed4/3 | ||
! ~7ed4\3 | !~7ed4\3 | ||
!~9ed4/3 | !~9ed4/3 | ||
|- | |- | ||
| | |0#, E# | ||
|1\11, 46.154 | |1\11, 46.154 | ||
|1\8, 63.158 | |1\8, 63.158 | ||
Line 628: | Line 758: | ||
|3\12, 124.138 | |3\12, 124.138 | ||
|2\7, 141.176 | |2\7, 141.176 | ||
|3\9, 163.636 | | 3\9, 163.636 | ||
|- | |- | ||
| | |1b, 1d | ||
|3\11, 138.462 | |||
| 3\11, 138.462 | |||
|2\8, 126.316 | |2\8, 126.316 | ||
|3\13, 116.129 | |3\13, 116.129 | ||
|2\12, 82.759 | | 2\12, 82.759 | ||
|1\7, 70.588 | |1\7, 70.588 | ||
|1\9, 54.545 | |1\9, 54.545 | ||
|- | |- | ||
|'''1''' | |'''1''' | ||
|'''4\11,''' '''184.615''' | |'''4\11,''' '''184.615''' | ||
Line 649: | Line 777: | ||
|'''4\9,''' '''218.182''' | |'''4\9,''' '''218.182''' | ||
|- | |- | ||
|1# | |1# | ||
| 5\11, 230.769 | |5\11, 230.769 | ||
| 4\8, 252.632 | |4\8, 252.632 | ||
|7\13, 270. | |7\13, 270.968 | ||
| rowspan="2" |'''3\5,''' '''300''' | | rowspan="2" |'''3\5,''' '''300''' | ||
|8\12, 331.034 | |8\12, 331.034 | ||
|5\7, 352.941 | |5\7, 352.941 | ||
| 7\9, 381.818 | |7\9, 381.818 | ||
|- | |- | ||
|''' | |'''2b, 2d''' | ||
|'''7\11,''' '''323.077''' | |'''7\11,''' '''323.077''' | ||
|'''5\8,''' '''315.789''' | |'''5\8,''' '''315.789''' | ||
Line 668: | Line 794: | ||
|'''5\9,''' '''272.727''' | |'''5\9,''' '''272.727''' | ||
|- | |- | ||
| | |2 | ||
|8\11, 369.231 | |||
| 8\11, 369.231 | |||
|6\8, 378.947 | |6\8, 378.947 | ||
|10\13, 387. | |10\13, 387.097 | ||
|4\5, 400 | |4\5, 400 | ||
|10\12, 413.793 | |10\12, 413.793 | ||
Line 678: | Line 803: | ||
|8\9, 436.364 | |8\9, 436.364 | ||
|- | |- | ||
|2# | |||
| 2# | |9\11, 415.385 | ||
| 9\11, 415.385 | | rowspan="2" |7\8, 442.105 | ||
| rowspan="2" | 7\8, 442.105 | |12\13, 464.516 | ||
| 12\13, 464.516 | |||
|5\5, 500 | |5\5, 500 | ||
|13\12, 537.069 | |13\12, 537.069 | ||
Line 688: | Line 812: | ||
|11\9, 600 | |11\9, 600 | ||
|- | |- | ||
| | |3b, 3d | ||
|10\11, 461.538 | |10\11, 461.538 | ||
|11\13, 425.806 | |11\13, 425.806 | ||
|4\5, 400 | |4\5, 400 | ||
|9\12, 372.414 | |9\12, 372.414 | ||
| 5\7, 352.941 | |5\7, 352.941 | ||
|6\9, 327.273 | |6\9, 327.273 | ||
|- | |- | ||
!3 | !3 | ||
!'''11\11,''' '''507.692''' | !'''11\11,''' '''507.692''' | ||
!'''8\8,''' '''505.263''' | !'''8\8,''' '''505.263''' | ||
!'''13\13,''' '''503.226''' | !'''13\13,''' '''503.226''' | ||
! 5\5, 500 | !5\5, 500 | ||
!'''12\12,''' '''496.552''' | !'''12\12,''' '''496.552''' | ||
!'''7\7,''' '''494.118''' | !'''7\7,''' '''494.118''' | ||
!'''9\9,''' '''490.909''' | !'''9\9,''' '''490.909''' | ||
|- | |- | ||
|3# | |||
| 3# | |||
|12\11, 553.846 | |12\11, 553.846 | ||
| 9\8, 568.421 | |9\8, 568.421 | ||
|15\13, 580.645 | |15\13, 580.645 | ||
| rowspan="2" | 6\5, 600 | | rowspan="2" |6\5, 600 | ||
| 15\12, 620.690 | |15\12, 620.690 | ||
|9\7, 635.294 | |9\7, 635.294 | ||
|12\9, 654.545 | |12\9, 654.545 | ||
|- | |- | ||
| | |4b, 4d | ||
|14\11, 646.154 | |14\11, 646.154 | ||
|10\8, 631.579 | |10\8, 631.579 | ||
Line 726: | Line 846: | ||
|10\9, 545.455 | |10\9, 545.455 | ||
|- | |- | ||
|'''4''' | |'''4''' | ||
|'''15\11,''' '''692.308''' | |'''15\11,''' '''692.308''' | ||
Line 736: | Line 855: | ||
|'''13\9,''' '''709.091''' | |'''13\9,''' '''709.091''' | ||
|- | |- | ||
|4# | |4# | ||
|16\11, 738.462 | |16\11, 738.462 | ||
Line 743: | Line 861: | ||
| rowspan="2" |'''8\5,''' '''800''' | | rowspan="2" |'''8\5,''' '''800''' | ||
|20\12, 827.586 | |20\12, 827.586 | ||
| 12\7, 847.059 | |12\7, 847.059 | ||
|16\9, 872.727 | |16\9, 872.727 | ||
|- | |- | ||
|''' | |'''5b, 5d''' | ||
|'''18\11,''' '''830.769''' | |'''18\11,''' '''830.769''' | ||
|'''13\8,''' '''821.053''' | |'''13\8,''' '''821.053''' | ||
Line 755: | Line 872: | ||
|'''14\9,''' '''763.636''' | |'''14\9,''' '''763.636''' | ||
|- | |- | ||
| | |5 | ||
|19\11, 876.923 | |19\11, 876.923 | ||
|14\8, 884.211 | |14\8, 884.211 | ||
Line 765: | Line 881: | ||
|17\9, 927.727 | |17\9, 927.727 | ||
|- | |- | ||
|5# | |5# | ||
|20\11, 923.077 | |20\11, 923.077 | ||
| rowspan="2" | 15\8, 947.368 | | rowspan="2" |15\8, 947.368 | ||
|25\13, 967.742 | |25\13, 967.742 | ||
|10\5, 1000 | |10\5, 1000 | ||
Line 775: | Line 890: | ||
|20\9, 1090.909 | |20\9, 1090.909 | ||
|- | |- | ||
| | |6b, 6d | ||
|21\11, 969.231 | |21\11, 969.231 | ||
|24\13, 929. | |24\13, 929.033 | ||
|9\5, 900 | | 9\5, 900 | ||
|21\12, 868.966 | |21\12, 868.966 | ||
|11\7, 776.471 | |11\7, 776.471 | ||
|15\9, 818.182 | |15\9, 818.182 | ||
|- | |- | ||
!6 | !6 | ||
!22\11, 1015.385 | !22\11, 1015.385 | ||
Line 794: | Line 907: | ||
!18\9, 981.818 | !18\9, 981.818 | ||
|- | |- | ||
|6# | |6# | ||
|23\11, 1061.538 | |23\11, 1061.538 | ||
Line 804: | Line 916: | ||
|21\9, 1145.455 | |21\9, 1145.455 | ||
|- | |- | ||
| | |7b, 7d | ||
| 25\11, 1153.846 | |||
|25\11, 1153.846 | |||
|18\8, 1136.842 | |18\8, 1136.842 | ||
|29\13, 1122.581 | |29\13, 1122.581 | ||
| 26\12, 1075.862 | |26\12, 1075.862 | ||
|15\7, 1058.824 | |15\7, 1058.824 | ||
|19\9, 1036.364 | |19\9, 1036.364 | ||
|- | |- | ||
|''' | |'''7''' | ||
|'''26\11,''' '''1200''' | |'''26\11,''' '''1200''' | ||
|'''19\8,''' '''1200''' | |'''19\8,''' '''1200''' | ||
Line 823: | Line 933: | ||
|'''22\9,''' '''1200''' | |'''22\9,''' '''1200''' | ||
|- | |- | ||
|7# | |7# | ||
|27\11, 1246.154 | |27\11, 1246.154 | ||
Line 833: | Line 942: | ||
|25\9, 1363.636 | |25\9, 1363.636 | ||
|- | |- | ||
|''' | |'''8b, Gd''' | ||
|'''29\11,''' '''1338.462''' | |'''29\11,''' '''1338.462''' | ||
|'''21\8,''' '''1326.316''' | |'''21\8,''' '''1326.316''' | ||
Line 842: | Line 950: | ||
|'''23\9,''' '''1254.545''' | |'''23\9,''' '''1254.545''' | ||
|- | |- | ||
| | |8, G | ||
|30\11, 1384.615 | |30\11, 1384.615 | ||
|22\8, 1389.474 | |22\8, 1389.474 | ||
Line 852: | Line 959: | ||
|26\9, 1418.182 | |26\9, 1418.182 | ||
|- | |- | ||
| | |8#, G# | ||
|31\11, 1430.769 | |||
| 31\11, 1430.769 | | rowspan="2" |23\8, 1452.632 | ||
| rowspan="2" | 23\8, 1452.632 | |||
|38\13, 1470.968 | |38\13, 1470.968 | ||
|15\5, 1500 | |15\5, 1500 | ||
|37\12, 1531.034 | |37\12, 1531.034 | ||
|22\7, 1552.941 | |22\7, 1552.941 | ||
|29\9, 1581.818 | | 29\9, 1581.818 | ||
|- | |- | ||
| | |9b, Ad | ||
|32\11, 1476.923 | |32\11, 1476.923 | ||
| 37\13, 1432.258 | |37\13, 1432.258 | ||
|14\5, 1400 | |14\5, 1400 | ||
|33\12, 1365.517 | |33\12, 1365.517 | ||
Line 871: | Line 976: | ||
|24\9, 1309.091 | |24\9, 1309.091 | ||
|- | |- | ||
!A | !'''9, A''' | ||
!33\11, 1523.077 | !33\11, 1523.077 | ||
!24\8, 1515.789 | !24\8, 1515.789 | ||
Line 881: | Line 985: | ||
!27\9, 1472.727 | !27\9, 1472.727 | ||
|- | |- | ||
|A | |9#, A# | ||
|34\11, 1569.231 | |34\11, 1569.231 | ||
|25\8, 1578.947 | | 25\8, 1578.947 | ||
|41\13, 1587.097 | |41\13, 1587.097 | ||
| rowspan="2" |16\5, 1600 | | rowspan="2" |16\5, 1600 | ||
Line 891: | Line 994: | ||
|30\9, 1636.364 | |30\9, 1636.364 | ||
|- | |- | ||
|Xb, Bd | |||
|Xb | |||
|36\11, 1661.538 | |36\11, 1661.538 | ||
|26\8, 1642.105 | |26\8, 1642.105 | ||
|42\13, 1625.806 | |42\13, 1625.806 | ||
|38\12, 1572.034 | |38\12, 1572.034 | ||
|22\7, 1552.941 | | 22\7, 1552.941 | ||
|28\9, 1527.{{Overline|27}} | |28\9, 1527.{{Overline|27}} | ||
|- | |- | ||
|'''B | |'''X, B''' | ||
|'''37\11,''' '''1707.692''' | |'''37\11,''' '''1707.692''' | ||
|'''27\8,''' '''1705.263''' | |'''27\8,''' '''1705.263''' | ||
Line 910: | Line 1,011: | ||
|'''31\9,''' '''1690.909''' | |'''31\9,''' '''1690.909''' | ||
|- | |- | ||
|B | |X#, B# | ||
|38\11, 1753.846 | |38\11, 1753.846 | ||
|28\8, 1768.421 | |28\8, 1768.421 | ||
Line 920: | Line 1,020: | ||
|34\9, 1854.545 | |34\9, 1854.545 | ||
|- | |- | ||
|''' | |'''Eb, Dd''' | ||
|'''40\11,''' '''1846.154''' | |'''40\11,''' '''1846.154''' | ||
|'''29\8,''' '''1831.579''' | |'''29\8,''' '''1831.579''' | ||
Line 929: | Line 1,028: | ||
|'''32\9,''' '''1745.455''' | |'''32\9,''' '''1745.455''' | ||
|- | |- | ||
| | |E, D | ||
|41\11, 1892.308 | |41\11, 1892.308 | ||
|30\8, 1894.737 | |30\8, 1894.737 | ||
Line 939: | Line 1,037: | ||
|35\9, 1909.090 | |35\9, 1909.090 | ||
|- | |- | ||
| | |E#, D# | ||
|42\11, 1938.462 | |42\11, 1938.462 | ||
| rowspan="2" |31\8, 1957.895 | | rowspan="2" |31\8, 1957.895 | ||
Line 949: | Line 1,046: | ||
|38\9, 2072.727 | |38\9, 2072.727 | ||
|- | |- | ||
| | |0b, Ed | ||
|43\11, 1984.615 | |43\11, 1984.615 | ||
|50\13, 1935.484 | |50\13, 1935.484 | ||
Line 958: | Line 1,054: | ||
|33\9, 1800 | |33\9, 1800 | ||
|- | |- | ||
! | !0, E | ||
!44\11, 2030.769 | !44\11, 2030.769 | ||
!32\8, 2021.053 | !32\8, 2021.053 | ||
Line 967: | Line 1,062: | ||
!28\7, 1976.471 | !28\7, 1976.471 | ||
!36\9, 1963.636 | !36\9, 1963.636 | ||
|} | |||
{| class="wikitable" | |||
! Notation | |||
!Supersoft | |||
! Soft | |||
!Semisoft | |||
!Basic | |||
!Semihard | |||
!Hard | |||
!Superhard | |||
|- | |- | ||
!Hyperionic | |||
!~11ed4/3 | |||
!~8ed4/3 | |||
!~13ed4/3 | |||
!~5ed4/3 | |||
!~12ed4/3 | |||
!~7ed4\3 | |||
!~9ed4/3 | |||
|- | |- | ||
| | |1# | ||
| | |1\11, 46.154 | ||
|1\8, 63.158 | |||
| | |2\13, 77.419 | ||
| | | rowspan="2" |1\5, 100 | ||
| | |3\12, 124.138 | ||
| | |2\7, 141.176 | ||
| | |3\9, 163.636 | ||
|- | |- | ||
| | |2f | ||
| | |3\11, 138.462 | ||
|2\8, 126.316 | |||
| | |3\13, 116.129 | ||
| | |2\12, 82.759 | ||
| 1\7, 70.588 | |||
| | |1\9, 54.545 | ||
| | |||
| | |||
|- | |- | ||
| | |'''2''' | ||
| | |'''4\11,''' '''184.615''' | ||
|'''3\8,''' '''189.474''' | |||
| | |'''5\13,''' '''193.548''' | ||
| | |'''2\5,''' '''200''' | ||
|'''5\12,''' '''206.897''' | |||
| | |'''3\7,''' '''211.765''' | ||
| | |'''4\9,''' '''218.182''' | ||
| | |||
|- | |- | ||
| | |2# | ||
| | | 5\11, 230.769 | ||
| | |4\8, 252.632 | ||
| | |7\13, 270.967 | ||
|''' | | rowspan="2" |'''3\5,''' '''300''' | ||
| | | 8\12, 331.034 | ||
| | |5\7, 352.941 | ||
| | |7\9, 381.818 | ||
|- | |- | ||
| | |'''3f''' | ||
| | |'''7\11,''' '''323.077''' | ||
|'''5\8,''' '''315.789''' | |||
| | |'''8\13,''' '''309.677''' | ||
| | |'''7\12,''' '''289.655''' | ||
| | |'''4\7,''' '''282.353''' | ||
|'''5\9,''' '''272.727''' | |||
| | |||
| | |||
|- | |- | ||
| | |3 | ||
| | |8\11, 369.231 | ||
|6\8, 378.947 | |||
| | |10\13, 387.098 | ||
| | |4\5, 400 | ||
| | |10\12, 413.793 | ||
| | |6\7, 423.529 | ||
| | |8\9, 436.364 | ||
| | |||
|- | |- | ||
| | |3# | ||
| | |9\11, 415.385 | ||
| | | rowspan="2" |7\8, 442.105 | ||
| | |12\13, 464.516 | ||
| | |5\5, 500 | ||
| | |13\12, 537.069 | ||
| | |8\7, 564.705 | ||
| | |11\9, 600 | ||
|- | |- | ||
|4f | |||
|10\11, 461.538 | |||
|11\13, 425.806 | |||
|4\5, 400 | |||
|9\12, 372.414 | |||
|5\7, 352.941 | |||
|6\9, 327.273 | |||
|- | |- | ||
!4 | |||
!'''11\11,''' '''507.692''' | |||
!'''8\8,''' '''505.263''' | |||
!'''13\13,''' '''503.226''' | |||
!5\5, 500 | |||
!'''12\12,''' '''496.552''' | |||
!'''7\7,''' '''494.118''' | |||
!'''9\9,''' '''490.909''' | |||
|- | |- | ||
| | |4# | ||
| | |12\11, 553.846 | ||
|9\8, 568.421 | |||
| | |15\13, 580.645 | ||
| | | rowspan="2" |6\5, 600 | ||
| | |15\12, 620.690 | ||
| | |9\7, 635.294 | ||
| | |12\9, 654.545 | ||
|- | |- | ||
| | |5f | ||
| | |14\11, 646.154 | ||
|10\8, 631.579 | |||
| | |16\13, 619.355 | ||
| | |14\12, 579.310 | ||
| | |8\7, 564.706 | ||
|10\9, 545.455 | |||
| | |||
| | |||
|- | |- | ||
| | |'''5''' | ||
| | |'''15\11,''' '''692.308''' | ||
|'''11\8''' '''694.737''' | |||
| | |'''18\13,''' '''696.774''' | ||
| | |'''7\5,''' '''700''' | ||
|'''17\12,''' '''703.448''' | |||
| | |'''10\7,''' '''705.882''' | ||
| | |'''13\9,''' '''709.091''' | ||
| | |||
|- | |- | ||
| | |5# | ||
| | |16\11, 738.462 | ||
| | |12\8, 757.895 | ||
| | |20\13, 774.194 | ||
|''' | | rowspan="2" |'''8\5,''' '''800''' | ||
| | |20\12, 827.586 | ||
| | |12\7, 847.059 | ||
| | |16\9, 872.727 | ||
|- | |- | ||
| | |'''6f''' | ||
| | |'''18\11,''' '''830.769''' | ||
|'''13\8,''' '''821.053''' | |||
| | |'''21\13,''' '''812.903''' | ||
| | |'''19\12,''' '''786.207''' | ||
|'''11\7,''' '''776.471''' | |||
| | |'''14\9,''' '''763.636''' | ||
| | |||
| | |||
|- | |- | ||
| | |6 | ||
| | |19\11, 876.923 | ||
|14\8, 884.211 | |||
| | |23\13, 890.323 | ||
| | |9\5, 900 | ||
| | |22\12, 910.345 | ||
| | |13\7, 917.647 | ||
| | |17\9, 927.727 | ||
| | |||
|- | |- | ||
| | |6# | ||
| | |20\11, 923.077 | ||
| | | rowspan="2" |15\8, 947.368 | ||
| | |25\13, 967.742 | ||
| | |10\5, 1000 | ||
| | | 25\12, 1034.483 | ||
| | |15\7, 1058.824 | ||
| | |20\9, 1090.909 | ||
|- | |||
|7f | |||
|21\11, 969.231 | |||
|24\13, 929.032 | |||
|9\5, 900 | |||
|21\12, 868.966 | |||
| 11\7, 776.471 | |||
|15\9, 818.182 | |||
|- | |- | ||
! | !7 | ||
! | !22\11, 1015.385 | ||
!16\8, 1010.526 | |||
! | !26\13, 1006.452 | ||
! | !10\5, 1000 | ||
! | !24\12, 993.103 | ||
! | !14\7, 988.235 | ||
! | ! 18\9, 981.818 | ||
! | |||
|- | |- | ||
| | | 7# | ||
|23\11, 1061.538 | |||
|17\8, 1073.684 | |||
|28\13, 1083.871 | |||
| rowspan="2" |11\5, 1100 | |||
|27\12, 1117.241 | |||
|16\7, 1129.412 | |||
|21\9, 1145.455 | |||
|- | |- | ||
| | |8f | ||
| | |25\11, 1153.846 | ||
| | |18\8, 1136.842 | ||
| | |29\13, 1122.581 | ||
| | |26\12, 1075.862 | ||
| | |15\7, 1058.824 | ||
|19\9, 1036.364 | |||
|- | |- | ||
| | |'''8''' | ||
| | |'''26\11,''' '''1200''' | ||
| | |'''19\8,''' '''1200''' | ||
| | |'''31\13,''' '''1200''' | ||
| | |'''12\5,''' '''1200''' | ||
| | |'''29\12,''' '''1200''' | ||
|'''17\7,''' '''1200''' | |||
|'''22\9,''' '''1200''' | |||
|- | |- | ||
| | |8# | ||
| | |27\11, 1246.154 | ||
| | |20\8, 1263.158 | ||
| | |33\13, 1277.419 | ||
| | | rowspan="2" |'''13\5,''' '''1300''' | ||
| | |32\12, 1324.138 | ||
|19\7, 1341.176 | |||
|25\9, 1363.636 | |||
|- | |- | ||
| | |'''9f''' | ||
|'''29\11,''' '''1338.462''' | |||
|'''21\8,''' '''1326.316''' | |||
|'''34\13,''' '''1316.129''' | |||
|'''31\12,''' '''1282.759''' | |||
|'''18\7,''' '''1270.588''' | |||
|'''23\9,''' '''1254.545''' | |||
|- | |- | ||
| | |9 | ||
| | |30\11, 1384.615 | ||
| | |22\8, 1389.474 | ||
| - | | 36\13, 1393.548 | ||
| | |14\5, 1400 | ||
| | |34\12, 1406.897 | ||
|20\7, 1411.765 | |||
|26\9, 1418.182 | |||
|- | |||
|9# | |||
|31\11, 1430.769 | |||
| rowspan="2" |23\8, 1452.632 | |||
|38\13, 1470.968 | |||
|15\5, 1500 | |||
|37\12, 1531.034 | |||
|22\7, 1552.941 | |||
| 29\9, 1581.818 | |||
|- | |- | ||
| | |Af | ||
| | |32\11, 1476.923 | ||
| | |37\13, 1432.258 | ||
| | |14\5, 1400 | ||
| | |33\12, 1365.517 | ||
| | |19\7, 1341.176 | ||
| | |24\9, 1309.091 | ||
|- | |- | ||
!A | |||
!33\11, 1523.077 | |||
!24\8, 1515.789 | |||
!39\13, 1509.677 | |||
!15\5, 1500 | |||
!36\12, 1489.655 | |||
!21\7, 1482.353 | |||
!27\9, 1472.727 | |||
! | |||
! | |||
! | |||
! | |||
|- | |- | ||
|A# | |||
|34\11, 1569.231 | |||
|25\8, 1578.947 | |||
|41\13, 1587.097 | |||
| rowspan="2" |16\5, 1600 | |||
| | |39\12, 1613.793 | ||
| | |23\7, 1623.529 | ||
| | |30\9, 1636.364 | ||
| | |||
| | |||
| | |||
|- | |- | ||
| | |Bf | ||
| | |36\11, 1661.538 | ||
| | |26\8, 1642.105 | ||
| | |42\13, 1625.806 | ||
| | |38\12, 1572.034 | ||
|22\7, 1552.941 | |||
|28\9, 1527.{{Overline|27}} | |||
|- | |- | ||
| | |'''B''' | ||
| | |'''37\11,''' '''1707.692''' | ||
| | |'''27\8,''' '''1705.263''' | ||
| | |'''44\13,''' '''1703.226''' | ||
| | |'''17\5,''' '''1700''' | ||
| | |'''41\12,''' '''1696.552''' | ||
|'''24\7,''' '''1694.118''' | |||
|'''31\9,''' '''1690.909''' | |||
|- | |||
|B# | |||
| 38\11, 1753.846 | |||
|28\8, 1768.421 | |||
|46\13, 1780.645 | |||
| rowspan="2" |'''18\5,''' '''1800''' | |||
|44\12, 1820.690 | |||
|26\7, 1835.294 | |||
| 34\9, 1854.545 | |||
|- | |||
|'''Cf''' | |||
|'''40\11,''' '''1846.154''' | |||
|'''29\8,''' '''1831.579''' | |||
|'''47\13,''' '''1819.355''' | |||
|'''43\12,''' '''1779.310''' | |||
|'''25\7,''' '''1764.706''' | |||
|'''32\9,''' '''1745.455''' | |||
|- | |- | ||
| | |C | ||
| | | 41\11, 1892.308 | ||
| | |30\8, 1894.737 | ||
| | |49\13, 1896.774 | ||
| | |19\5, 1900 | ||
| | |46\12, 1903.448 | ||
|27\7, 1905.882 | |||
|35\9, 1909.090 | |||
|- | |- | ||
| | |C# | ||
| | |42\11, 1938.462 | ||
| | | rowspan="2" |31\8, 1957.895 | ||
|5 | |51\13, 1974.194 | ||
| | |20\5, 2000 | ||
| | |49\12, 2027.586 | ||
|29\7, 2047.059 | |||
| 38\9, 2072.727 | |||
|- | |- | ||
| | |Df | ||
| | |43\11, 1984.615 | ||
|5 | |50\13, 1935.484 | ||
| | |19\5, 1900 | ||
| | |45\12, 1862.069 | ||
| | |26\7, 1835.294 | ||
|33\9, 1800 | |||
|- | |- | ||
!D | |||
!44\11, 2030.769 | |||
!32\8, 2021.053 | |||
! 52\13, 2012.903 | |||
!20\5, 2000 | |||
!48\12, 1986.207 | |||
!28\7, 1976.471 | |||
!36\9, 1963.636 | |||
|- | |- | ||
| | | D# | ||
| | |45\11, 2076.923 | ||
| | |33\8, 2084.211 | ||
| | |54\13, 2090.323 | ||
| | | rowspan="2" |21\5, 2100 | ||
| | |51\12, 2110.345 | ||
|30\7, 2117.647 | |||
|39\9, 2127.273 | |||
|- | |- | ||
| | |Ef | ||
| | |47\11, 2169.231 | ||
| | |34\8, 2147.368 | ||
| | |55\13, 2129.032 | ||
| | |50\12, 2068.966 | ||
| | |29\7, 2047.059 | ||
|37\9, 2018.182 | |||
|- | |- | ||
|11\ | |'''E''' | ||
| | |'''48\11,''' '''2215.385''' | ||
| | |'''35\8,''' '''2210.526''' | ||
| | |'''57\13,''' '''2206.452''' | ||
| | |'''22\5,''' '''2200''' | ||
| | |'''53\12,''' '''2193.103''' | ||
|'''31\7,''' '''2188.235''' | |||
|'''40\9,''' '''2181.818''' | |||
|- | |- | ||
| | |E# | ||
| | |49\11, 2261.538 | ||
| | |36\8, 2273.684 | ||
|5 | |59\13, 2283.871 | ||
| | | rowspan="2" |'''23\5,''' '''2300''' | ||
| | |56\12, 2317.241 | ||
|33\7, 2329.412 | |||
|43\9, 2345.455 | |||
|- | |- | ||
| | |'''Ff''' | ||
| | |'''51\11,''' '''2353.846''' | ||
| | |'''37\8,''' '''2336.842''' | ||
| | |'''61\13,''' '''2322.581''' | ||
| | |'''55\12,''' '''2275.864''' | ||
| | |'''32\7,''' '''2258.824''' | ||
|'''41\9,''' '''2236.364''' | |||
|- | |- | ||
| | |F | ||
| | |52\11, 2400 | ||
|13 | |38\8, 2400 | ||
| | |62\13, 2400 | ||
| | |24\5, 2400 | ||
| | |58\12, 2400 | ||
|34\7, 2400 | |||
|44\9, 2400 | |||
|- | |- | ||
| | |F# | ||
| | |53\11, 2446.154 | ||
| | | rowspan="2" |39\8, 2463.158 | ||
| | |64\13, 2477.419 | ||
| | |25\5, 2500 | ||
| | |61\12, 2524.138 | ||
|36\7, 2541.176 | |||
|47/9, 2563.636 | |||
|- | |- | ||
| | |1f | ||
| | |54\11, 2492.308 | ||
| | |63\13, 2438.710 | ||
| | |24\5, 2400 | ||
| | |57\12, 2358.621 | ||
| | |33\7, 2329.412 | ||
|42\9, 2390.909 | |||
|- | |- | ||
!1 | |||
!55\11, 2538.462 | |||
!40\8, 2526.316 | |||
!65\13, 2516.129 | |||
| | !25\5, 2500 | ||
| | !60\12, 2482.759 | ||
!35\7, 2470.588 | |||
!45\9, 2454.545 | |||
|} | |||
{| class="wikitable" | |||
!Notation | |||
!Supersoft | |||
!Soft | |||
!Semisoft | |||
!Basic | |||
!Semihard | |||
!Hard | |||
!Superhard | |||
|- | |- | ||
!Subsextal | |||
!~11ed4/3 | |||
!~8ed4/3 | |||
!~13ed4/3 | |||
!~5ed4/3 | |||
!~12ed4/3 | |||
!~7ed4\3 | |||
!~9ed4/3 | |||
|- | |- | ||
| | |0# | ||
| | |1\11, 46.154 | ||
|5 | |1\8, 63.158 | ||
|3 | |2\13, 77.419 | ||
| | | rowspan="2" |1\5, 100 | ||
| | |3\12, 124.138 | ||
|2\7, 141.176 | |||
|3\9, 163.636 | |||
|- | |- | ||
| | |1f | ||
| | |3\11, 138.462 | ||
|12 | |2\8, 126.316 | ||
|7 | |3\13, 116.129 | ||
|1. | |2\12, 82.759 | ||
|1\7, 70.588 | |||
|1\9, 54.545 | |||
|- | |- | ||
| | |'''1''' | ||
| | |'''4\11,''' '''184.615''' | ||
| | |'''3\8,''' '''189.474''' | ||
| | |'''5\13,''' '''193.548''' | ||
| | |'''2\5,''' '''200''' | ||
| | |'''5\12,''' '''206.897''' | ||
|'''3\7,''' '''211.765''' | |||
|'''4\9,''' '''218.182''' | |||
|- | |- | ||
| | |1# | ||
| | |5\11, 230.769 | ||
| | |4\8, 252.632 | ||
|5 | |7\13, 270.967 | ||
| | | rowspan="2" |'''3\5,''' '''300''' | ||
| | |8\12, 331.034 | ||
|5\7, 352.941 | |||
|7\9, 381.818 | |||
|- | |- | ||
|11 | |2f | ||
| | |'''7\11,''' '''323.077''' | ||
| | |'''5\8,''' '''315.789''' | ||
| | |'''8\13,''' '''309.677''' | ||
| | |'''7\12,''' '''289.655''' | ||
| | |'''4\7,''' '''282.353''' | ||
|'''5\9,''' '''272.727''' | |||
|- | |- | ||
| | |'''2''' | ||
| | |8\11, 369.231 | ||
|13 | |6\8, 378.947 | ||
| | |10\13, 387.098 | ||
| | |4\5, 400 | ||
| | |10\12, 413.793 | ||
|6\7, 423.529 | |||
|8\9, 436.364 | |||
|- | |- | ||
| | |2# | ||
| | |9\11, 415.385 | ||
| | | rowspan="2" |7\8, 442.105 | ||
| | |12\13, 464.516 | ||
| | |5\5, 500 | ||
| | |13\12, 537.069 | ||
|8\7, 564.705 | |||
|11\9, 600 | |||
|- | |- | ||
| | |'''3f''' | ||
| | |10\11, 461.538 | ||
| | |11\13, 425.806 | ||
|9 | |4\5, 400 | ||
| | |9\12, 372.414 | ||
| | |5\7, 352.941 | ||
|6\9, 327.273 | |||
|- | |- | ||
!3 | |||
!'''11\11,''' '''507.692''' | |||
!'''8\8,''' '''505.263''' | |||
!'''13\13,''' '''503.226''' | |||
!5\5, 500 | |||
!'''12\12,''' '''496.552''' | |||
!'''7\7,''' '''494.118''' | |||
!'''9\9,''' '''490.909''' | |||
|- | |- | ||
| | |3# | ||
| | |12\11, 553.846 | ||
| | |9\8, 568.421 | ||
| | |15\13, 580.645 | ||
| | | rowspan="2" |6\5, 600 | ||
| | |15\12, 620.690 | ||
|9\7, 635.294 | |||
|12\9, 654.545 | |||
|- | |- | ||
| | |4f | ||
| | |14\11, 646.154 | ||
| | |10\8, 631.579 | ||
|12 | |16\13, 619.355 | ||
| | |14\12, 579.310 | ||
| | |8\7, 564.706 | ||
|10\9, 545.455 | |||
|- | |- | ||
| | |'''4''' | ||
| | |'''15\11,''' '''692.308''' | ||
| | |'''11\8''' '''694.737''' | ||
| | |'''18\13,''' '''696.774''' | ||
| | |'''7\5,''' '''700''' | ||
| | |'''17\12,''' '''703.448''' | ||
|'''10\7,''' '''705.882''' | |||
|'''13\9,''' '''709.091''' | |||
|- | |- | ||
| | |4# | ||
| | |16\11, 738.462 | ||
| | |12\8, 757.895 | ||
| | |20\13, 774.194 | ||
| | | rowspan="2" |'''8\5,''' '''800''' | ||
| | |20\12, 827.586 | ||
|12\7, 847.059 | |||
|16\9, 872.727 | |||
|- | |- | ||
| | |5f | ||
| | |'''18\11,''' '''830.769''' | ||
| | |'''13\8,''' '''821.053''' | ||
| | |'''21\13,''' '''812.903''' | ||
| | |'''19\12,''' '''786.207''' | ||
| | |'''11\7,''' '''776.471''' | ||
|'''14\9,''' '''763.636''' | |||
|- | |- | ||
| | |'''5''' | ||
| | |19\11, 876.923 | ||
| | |14\8, 884.211 | ||
| | |23\13, 890.323 | ||
| | |9\5, 900 | ||
| | |22\12, 910.345 | ||
|13\7, 917.647 | |||
|17\9, 927.727 | |||
|- | |- | ||
| | |5# | ||
| | |20\11, 923.077 | ||
| | | rowspan="2" |15\8, 947.368 | ||
| | |25\13, 967.742 | ||
| | |10\5, 1000 | ||
| | |25\12, 1034.483 | ||
|15\7, 1058.824 | |||
|20\9, 1090.909 | |||
|- | |- | ||
| | |'''6f''' | ||
| | |21\11, 969.231 | ||
| | |24\13, 929.032 | ||
| | |9\5, 900 | ||
| | |21\12, 868.966 | ||
| | |11\7, 776.471 | ||
|15\9, 818.182 | |||
|- | |- | ||
!6 | |||
!22\11, 1015.385 | |||
!16\8, 1010.526 | |||
!26\13, 1006.452 | |||
!10\5, 1000 | |||
!24\12, 993.103 | |||
!14\7, 988.235 | |||
!18\9, 981.818 | |||
|- | |- | ||
|17\ | |6# | ||
| | |23\11, 1061.538 | ||
| | |17\8, 1073.684 | ||
|8 | |28\13, 1083.871 | ||
| | | rowspan="2" |11\5, 1100 | ||
| | |27\12, 1117.241 | ||
|16\7, 1129.412 | |||
|21\9, 1145.455 | |||
|- | |||
|7f | |||
|25\11, 1153.846 | |||
|18\8, 1136.842 | |||
|29\13, 1122.581 | |||
|26\12, 1075.862 | |||
|15\7, 1058.824 | |||
|19\9, 1036.364 | |||
|- | |- | ||
|7 | |7 | ||
| | |'''26\11,''' '''1200''' | ||
| | |'''19\8,''' '''1200''' | ||
| | |'''31\13,''' '''1200''' | ||
| | |'''12\5,''' '''1200''' | ||
| | |'''29\12,''' '''1200''' | ||
| | |'''17\7,''' '''1200''' | ||
|'''22\9,''' '''1200''' | |||
| | |||
|- | |- | ||
|11\ | |7# | ||
| | |27\11, 1246.154 | ||
| | |20\8, 1263.158 | ||
| | |33\13, 1277.419 | ||
| | | rowspan="2" |'''13\5,''' '''1300''' | ||
| | |32\12, 1324.138 | ||
|19\7, 1341.176 | |||
|25\9, 1363.636 | |||
|- | |- | ||
| | |8f | ||
| | |'''29\11,''' '''1338.462''' | ||
| | |'''21\8,''' '''1326.316''' | ||
| | |'''34\13,''' '''1316.129''' | ||
| | |'''31\12,''' '''1282.759''' | ||
| | |'''18\7,''' '''1270.588''' | ||
|'''23\9,''' '''1254.545''' | |||
|- | |- | ||
| | |'''8''' | ||
| | |30\11, 1384.615 | ||
| | |22\8, 1389.474 | ||
| | |36\13, 1393.548 | ||
| | |14\5, 1400 | ||
| | |34\12, 1406.897 | ||
|20\7, 1411.765 | |||
|26\9, 1418.182 | |||
|- | |- | ||
| | |8# | ||
| | |31\11, 1430.769 | ||
| | | rowspan="2" |23\8, 1452.632 | ||
|5 | |38\13, 1470.968 | ||
| | |15\5, 1500 | ||
| | |37\12, 1531.034 | ||
|22\7, 1552.941 | |||
|29\9, 1581.818 | |||
|- | |- | ||
| | |9f | ||
| | |32\11, 1476.923 | ||
|5 | |37\13, 1432.258 | ||
| | |14\5, 1400 | ||
| | |33\12, 1365.517 | ||
| | |19\7, 1341.176 | ||
|24\9, 1309.091 | |||
|- | |- | ||
!9 | |||
!33\11, 1523.077 | |||
!24\8, 1515.789 | |||
!39\13, 1509.677 | |||
!15\5, 1500 | |||
!36\12, 1489.655 | |||
!21\7, 1482.353 | |||
!27\9, 1472.727 | |||
|- | |- | ||
| | |9# | ||
| | |34\11, 1569.231 | ||
|13 | |25\8, 1578.947 | ||
|5 | |41\13, 1587.097 | ||
| | | rowspan="2" |16\5, 1600 | ||
| | |39\12, 1613.793 | ||
|23\7, 1623.529 | |||
|30\9, 1636.364 | |||
|- | |- | ||
| | |Xb | ||
| | |36\11, 1661.538 | ||
| | |26\8, 1642.105 | ||
| | |42\13, 1625.806 | ||
| | |38\12, 1572.034 | ||
| | |22\7, 1552.941 | ||
|28\9, 1527.{{Overline|27}} | |||
|- | |- | ||
|11\ | |'''X''' | ||
| | |'''37\11,''' '''1707.692''' | ||
| | |'''27\8,''' '''1705.263''' | ||
| | |'''44\13,''' '''1703.226''' | ||
| | |'''17\5,''' '''1700''' | ||
| | |'''41\12,''' '''1696.552''' | ||
|'''24\7,''' '''1694.118''' | |||
|'''31\9,''' '''1690.909''' | |||
|- | |- | ||
| | |X# | ||
| | |38\11, 1753.846 | ||
| | |28\8, 1768.421 | ||
|5 | |46\13, 1780.645 | ||
| | | rowspan="2" |'''18\5,''' '''1800''' | ||
| | |44\12, 1820.690 | ||
|26\7, 1835.294 | |||
|34\9, 1854.545 | |||
|- | |- | ||
| | |'''ɛf''' | ||
| | |'''40\11,''' '''1846.154''' | ||
| | |'''29\8,''' '''1831.579''' | ||
| | |'''47\13,''' '''1819.355''' | ||
| | |'''43\12,''' '''1779.310''' | ||
| | |'''25\7,''' '''1764.706''' | ||
|'''32\9,''' '''1745.455''' | |||
|- | |- | ||
| | |ɛ | ||
| | |41\11, 1892.308 | ||
| | |30\8, 1894.737 | ||
| | |49\13, 1896.774 | ||
| | |19\5, 1900 | ||
| | |46\12, 1903.448 | ||
|27\7, 1905.882 | |||
|35\9, 1909.090 | |||
|- | |- | ||
| | |ɛ# | ||
| | |42\11, 1938.462 | ||
| | | rowspan="2" |31\8, 1957.895 | ||
| | |51\13, 1974.194 | ||
| | |20\5, 2000 | ||
| | |49\12, 2027.586 | ||
|29\7, 2047.059 | |||
|38\9, 2072.727 | |||
|- | |- | ||
| | |Af | ||
| | |43\11, 1984.615 | ||
| | |50\13, 1935.484 | ||
| | |19\5, 1900 | ||
| | |45\12, 1862.069 | ||
| | |26\7, 1835.294 | ||
|33\9, 1800 | |||
|- | |- | ||
!A | |||
!44\11, 2030.769 | |||
!32\8, 2021.053 | |||
!52\13, 2012.903 | |||
!20\5, 2000 | |||
!48\12, 1986.207 | |||
!28\7, 1976.471 | |||
!36\9, 1963.636 | |||
|- | |- | ||
| | |A# | ||
| | |45\11, 2076.923 | ||
| | |33\8, 2084.211 | ||
| | |54\13, 2090.323 | ||
| | | rowspan="2" |21\5, 2100 | ||
| | |51\12, 2110.345 | ||
|30\7, 2117.647 | |||
|39\9, 2127.273 | |||
|- | |- | ||
| | |Bf | ||
| | |47\11, 2169.231 | ||
| | |34\8, 2147.368 | ||
| | |55\13, 2129.032 | ||
| | |50\12, 2068.966 | ||
| | |29\7, 2047.059 | ||
|37\9, 2018.182 | |||
|- | |- | ||
|11\ | |'''B''' | ||
| | |'''48\11,''' '''2215.385''' | ||
| | |'''35\8,''' '''2210.526''' | ||
| | |'''57\13,''' '''2206.452''' | ||
| | |'''22\5,''' '''2200''' | ||
| | |'''53\12,''' '''2193.103''' | ||
|'''31\7,''' '''2188.235''' | |||
|'''40\9,''' '''2181.818''' | |||
|- | |- | ||
| | |B# | ||
| | |49\11, 2261.538 | ||
| | |36\8, 2273.684 | ||
| | |59\13, 2283.871 | ||
| | | rowspan="2" |'''23\5,''' '''2300''' | ||
| | |56\12, 2317.241 | ||
|33\7, 2329.412 | |||
|43\9, 2345.455 | |||
|- | |- | ||
| | |'''Cf''' | ||
| | |'''51\11,''' '''2353.846''' | ||
| | |'''37\8,''' '''2336.842''' | ||
| | |'''61\13,''' '''2322.581''' | ||
| | |'''55\12,''' '''2275.864''' | ||
| | |'''32\7,''' '''2258.824''' | ||
|'''41\9,''' '''2236.364''' | |||
|- | |- | ||
| | |C | ||
| | |52\11, 2400 | ||
| | |38\8, 2400 | ||
| | |62\13, 2400 | ||
| | |24\5, 2400 | ||
| | |58\12, 2400 | ||
|34\7, 2400 | |||
|44\9, 2400 | |||
|- | |- | ||
| | |C# | ||
| | |53\11, 2446.154 | ||
|13 | | rowspan="2" |39\8, 2463.158 | ||
| | |64\13, 2477.419 | ||
| | |25\5, 2500 | ||
| | |61\12, 2524.138 | ||
|36\7, 2541.176 | |||
|47/9, 2563.636 | |||
|- | |- | ||
| | |Df | ||
| | |54\11, 2492.308 | ||
| | |63\13, 2438.710 | ||
| | |24\5, 2400 | ||
| | |57\12, 2358.621 | ||
| | |33\7, 2329.412 | ||
|42\9, 2390.909 | |||
|- | |- | ||
!D | |||
!55\11, 2538.462 | |||
!40\8, 2526.316 | |||
!65\13, 2516.129 | |||
!25\5, 2500 | |||
!60\12, 2482.759 | |||
!35\7, 2470.588 | |||
!45\9, 2454.545 | |||
|- | |- | ||
| | |D# | ||
| | |56\11, 2584.615 | ||
|5 | |41\8, 2589.474 | ||
| | |67\13, 2593.548 | ||
| | | rowspan="2" |26\5, 2600 | ||
| | |63\12, 2606.897 | ||
|37\7, 2611.765 | |||
|48\9, 2618.182 | |||
|- | |- | ||
|11 | |Ef | ||
| | |58\11, 2676.923 | ||
| | |42\8, 2652.632 | ||
| | |69\13, 2670.968 | ||
| | |62\12, 2565.517 | ||
| | |36\7, 2541.176 | ||
|46\9, 2509.091 | |||
|- | |- | ||
| | |'''E''' | ||
| | |'''59\11,''' '''2723.077''' | ||
| | |'''43\8,''' '''2715.789''' | ||
| | |'''70\13,''' '''2709.677''' | ||
| | |'''27\5,''' '''2700''' | ||
| | |'''65\12,''' '''2689.655''' | ||
|'''38\7,''' '''2682.353''' | |||
|'''49\9,''' '''2672.727''' | |||
|- | |- | ||
| | |E# | ||
| | |60\11, 2769.231 | ||
|6 | |44\8, 2778.947 | ||
| | |72\13, 2787.097 | ||
| | | rowspan="2" |'''28\5,''' '''2800''' | ||
| | |68\12, 2813.793 | ||
|40\7, 2823.529 | |||
|52\9, 2836.364 | |||
|- | |||
|'''Ff''' | |||
|'''62\11,''' '''2861.538''' | |||
|'''45\8,''' '''2842.105''' | |||
|'''73\13,''' '''2825.806''' | |||
|'''67\12,''' '''2772.034''' | |||
|'''39\7,''' '''2752.941''' | |||
|'''50\9,''' '''2727.273''' | |||
|- | |||
|F | |||
|63\11, 2907.692 | |||
|46\8, 2905.263 | |||
|75\13, 2903.226 | |||
|29\5, 2900 | |||
|70\12, 2896.552 | |||
|41\7, 2894.118 | |||
|53\9, 2890.909 | |||
|- | |||
|F# | |||
|64\11, 2953.846 | |||
| rowspan="2" |47\8, 2968.421 | |||
|77\13, 2980.645 | |||
|30\5, 3000 | |||
|73\12, 3020.690 | |||
|43\7, 3035.294 | |||
|55\9, 3000 | |||
|- | |||
|0f | |||
|65\11, 3000 | |||
|76\13, 2941.935 | |||
|29\5, 2900 | |||
|69\29, 2855.172 | |||
|40\7, 2823.529 | |||
|52\9, 2836.364 | |||
|- | |||
!0 | |||
!66\11, 3046.154 | |||
!48\8, 30'''31.579''' | |||
!78\13, 30'''19.355''' | |||
!30\5, 3000 | |||
!72\12, 29'''79.310''' | |||
!42\7, 2964.706 | |||
!54\9, 2945.455 | |||
|} | |||
==Intervals== | |||
{| class="wikitable" | |||
!Generators | |||
!Fourth notation | |||
!Interval category name | |||
!Generators | |||
!Notation of 4/3 inverse | |||
!Interval category name | |||
|- | |||
| colspan="6" |The 3-note MOS has the following intervals (from some root): | |||
|- | |||
|0 | |||
|F/C/G ut | |||
Do, Sol | |||
د, ص | |||
|perfect unison | |||
|0 | |||
|F/C/G ut | |||
Do, Sol | |||
د, ص | |||
|perfect fourth | |||
|- | |- | ||
|1 | |1 | ||
|0 | |A/E/B mib | ||
|→ inf | Mib, Sib | ||
|Paucitonic | |||
|} | صb, مb | ||
|diminished third | |||
==See also== | | -1 | ||
[[2L 1s (4/3-equivalent)]] - idealized tuning | |G/D/A re | ||
Re, La | |||
[[4L 2s (7/4-equivalent)]] - Mixolydian and Dorian hexatonic Archytas temperament | |||
ر, ل | |||
[[4L 2s (39/22-equivalent)]] - Mixolydian and Dorian hexatonic Neogothic temperament | |perfect second | ||
|- | |||
[[4L 2s (Komornik–Loreti constant-equivalent)]] - Mixolydian and Dorian hexatonic Komornik–Loreti temperament | |2 | ||
|G/D/A reb | |||
[[4L 2s (9/5-equivalent)]] - Mixolydian and Dorian hexatonic Meantone temperament | Reb, Lab | ||
[[6L 3s (7/3-equivalent)]] - Mahuric-Archytas temperament | رb, لb | ||
|diminished second | |||
[[6L 3s (26/11-equivalent)]] - Mahuric-Neogothic temperament | | -2 | ||
|A/E/B mi | |||
Mi, Si | |||
ص, م | |||
|perfect third | |||
|- | |||
| colspan="6" |The chromatic 5-note MOS also has the following intervals (from some root): | |||
|- | |||
|3 | |||
|F/C/G utb | |||
Dob, Solb | |||
دb, صb | |||
|diminished fourth | |||
| -3 | |||
|F/C/G ut# | |||
Do#, Sol# | |||
د, #ص# | |||
|augmented unison (chroma) | |||
|- | |||
|4 | |||
|A/E/B mibb | |||
Mibb, Sibb | |||
مbb, صbb | |||
|doubly diminished third | |||
| -4 | |||
|G/D/A re# | |||
Re#, La# | |||
ر ,# ل# | |||
|augmented second | |||
|} | |||
==Genchain== | |||
The generator chain for this scale is as follows: | |||
{| class="wikitable" | |||
|A/E/B mibb | |||
|F/C/G utb | |||
|G/D/A reb | |||
|A/E/B mib | |||
|F/C/G ut | |||
|G/D/A re | |||
|A/E/B mi | |||
|F/C/G ut# | |||
|G/D/A re# | |||
|A/E/B mi# | |||
|- | |||
|Mibb | |||
Sibb | |||
|Dob | |||
Solb | |||
|Reb | |||
Lab | |||
|Mib | |||
Sib | |||
|Do | |||
Sol | |||
|Re | |||
La | |||
|Mi | |||
Si | |||
|Do# | |||
Sol# | |||
|Re# | |||
La# | |||
|Mi# | |||
Si# | |||
|- | |||
|مbb | |||
تbb | |||
|دb | |||
صb | |||
|رb | |||
لb | |||
|مb | |||
تb | |||
|د | |||
ص | |||
|ر | |||
ل | |||
|م | |||
ت | |||
|د# | |||
ص# | |||
|ر# | |||
ل# | |||
|م# | |||
ت# | |||
|- | |||
|dd3 | |||
|d4 | |||
|d2 | |||
|d3 | |||
|P1 | |||
|P2 | |||
|P3 | |||
|A1 | |||
|A2 | |||
|A3 | |||
|} | |||
==Modes== | |||
The mode names are based on the species of fourth: | |||
{| class="wikitable" | |||
!Mode | |||
!Scale | |||
![[Modal UDP Notation|UDP]] | |||
! colspan="2" |Interval type | |||
|- | |||
!name | |||
!pattern | |||
!notation | |||
!2nd | |||
!3rd | |||
|- | |||
|Major | |||
|LLs | |||
|<nowiki>2|0</nowiki> | |||
|P | |||
|P | |||
|- | |||
|Minor | |||
|LsL | |||
|<nowiki>1|1</nowiki> | |||
|P | |||
|d | |||
|- | |||
|Phrygian | |||
|sLL | |||
|<nowiki>0|2</nowiki> | |||
|d | |||
|d | |||
|} | |||
==Temperaments== | |||
The most basic rank-2 temperament interpretation of diatonic is '''Mahuric'''. The name "Mahuric" comes from the “Mahur” scale in Persian and Arabic music. The major triad is spelled <code>root-2g-(p+g)</code> (p = 4/3, g = the whole tone) and approximates 4:5:6 in pental interpretations or 14:18:21 in septimal ones. Basic ~5ed4/3 fits both interpretations. | |||
==='''Mahuric-Meantone'''=== | |||
[[Subgroup]]: 4/3.5/4.3/2 | |||
[[Comma]] list: [[81/80]] | |||
[[POL2]] generator: ~9/8 = 193.6725¢ | |||
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}] | |||
[[Optimal ET sequence]]: [[15ed12/5]], [[24ed12/5]], [[39ed12/5]] ≈ [[5ed4/3]], [[8ed4/3]], [[13ed4/3]] | |||
==='''Mahuric-Superpyth'''=== | |||
[[Subgroup]]: 4/3.9/7.3/2 | |||
[[Comma]] list: [[64/63]] | |||
[[POL2]] generator: ~8/7 = 216.7325¢ | |||
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}] | |||
[[Optimal ET sequence]]: [[15ed7/3]], [[21ed7/3]], [[27ed7/3]], [[33ed7/3]] ≈ [[5ed4/3]], [[7ed4/3]], [[9ed4/3]], [[11ed4/3]] | |||
====Scale tree==== | |||
The spectrum looks like this: | |||
{| class="wikitable" | |||
!Generator | |||
(bright) | |||
!Cents | |||
!L | |||
!s | |||
!L/s | |||
!Comments | |||
|- | |||
|1\3 | |||
|171.429 | |||
|1 | |||
|1 | |||
|1.000 | |||
|Equalised | |||
|- | |||
|6\17 | |||
|180.000 | |||
|6 | |||
|5 | |||
|1.200 | |||
| | |||
|- | |||
|5\14 | |||
|181.818 | |||
|5 | |||
|4 | |||
|1.250 | |||
| | |||
|- | |||
|14\39 | |||
|182.609 | |||
|14 | |||
|11 | |||
|1.273 | |||
| | |||
|- | |||
|9\25 | |||
|183.051 | |||
|9 | |||
|7 | |||
|1.286 | |||
| | |||
|- | |||
|4\11 | |||
|184.615 | |||
|4 | |||
|3 | |||
|1.333 | |||
| | |||
|- | |||
|11\30 | |||
|185.915 | |||
|11 | |||
|8 | |||
|1.375 | |||
| | |||
|- | |||
|7\19 | |||
|186.667 | |||
|7 | |||
|5 | |||
|1.400 | |||
| | |||
|- | |||
|10\27 | |||
|187.500 | |||
|10 | |||
|7 | |||
|1.429 | |||
| | |||
|- | |||
|13\35 | |||
|187.952 | |||
|13 | |||
|9 | |||
|1.444 | |||
| | |||
|- | |||
|16\43 | |||
|188.253 | |||
|16 | |||
|11 | |||
|1.4545 | |||
| | |||
|- | |||
|3\8 | |||
|189.474 | |||
|3 | |||
|2 | |||
|1.500 | |||
|Mahuric-Meantone starts here | |||
|- | |||
|14\37 | |||
|190.909 | |||
|14 | |||
|9 | |||
|1.556 | |||
| | |||
|- | |||
|11\29 | |||
|191.304 | |||
|11 | |||
|7 | |||
|1.571 | |||
| | |||
|- | |||
|8\21 | |||
|192.000 | |||
|8 | |||
|5 | |||
|1.600 | |||
| | |||
|- | |||
|5\13 | |||
|193.548 | |||
|5 | |||
|3 | |||
|1.667 | |||
| | |||
|- | |||
|12\31 | |||
|194.595 | |||
|12 | |||
|7 | |||
|1.714 | |||
| | |||
|- | |||
|7\18 | |||
|195.348 | |||
|7 | |||
|4 | |||
|1.750 | |||
| | |||
|- | |||
|9\23 | |||
|196.364 | |||
|9 | |||
|5 | |||
|1.800 | |||
| | |||
|- | |||
|11\28 | |||
|197.015 | |||
|11 | |||
|6 | |||
|1.833 | |||
| | |||
|- | |||
|13\33 | |||
|197.468 | |||
|13 | |||
|7 | |||
|1.857 | |||
| | |||
|- | |||
|15\38 | |||
|197.802 | |||
|15 | |||
|8 | |||
|1.875 | |||
| | |||
|- | |||
|17\43 | |||
|198.058 | |||
|17 | |||
|9 | |||
|1.889 | |||
| | |||
|- | |||
|19\48 | |||
|198.261 | |||
|19 | |||
|10 | |||
|1.900 | |||
| | |||
|- | |||
|21\53 | |||
|198.425 | |||
|21 | |||
|11 | |||
|1.909 | |||
| | |||
|- | |||
|23\58 | |||
|198.561 | |||
|23 | |||
|12 | |||
|1.917 | |||
| | |||
|- | |||
|25\63 | |||
|198.675 | |||
|25 | |||
|13 | |||
|1.923 | |||
| | |||
|- | |||
|27\68 | |||
|198.773 | |||
|27 | |||
|14 | |||
|1.929 | |||
| | |||
|- | |||
|29\73 | |||
|198.857 | |||
|29 | |||
|15 | |||
|1.933 | |||
| | |||
|- | |||
|31\78 | |||
|198.930 | |||
|31 | |||
|16 | |||
|1.9375 | |||
| | |||
|- | |||
|33\83 | |||
|198.995 | |||
|33 | |||
|17 | |||
|1.941 | |||
| | |||
|- | |||
|35\88 | |||
|199.052 | |||
|35 | |||
|18 | |||
|1.944 | |||
| | |||
|- | |||
|2\5 | |||
|200.000 | |||
|2 | |||
|1 | |||
|2.000 | |||
|Mahuric-Meantone ends, Mahuric-Pythagorean begins | |||
|- | |||
|17\42 | |||
|201.980 | |||
|17 | |||
|8 | |||
|2.125 | |||
| | |||
|- | |||
|15\37 | |||
|202.247 | |||
|15 | |||
|7 | |||
|2.143 | |||
| | |||
|- | |||
|13\32 | |||
|202.597 | |||
|13 | |||
|6 | |||
|2.167 | |||
| | |||
|- | |||
|11\27 | |||
|203.077 | |||
|11 | |||
|5 | |||
|2.200 | |||
| | |||
|- | |||
|9\22 | |||
|203.774 | |||
|9 | |||
|4 | |||
|2.250 | |||
| | |||
|- | |||
|7\17 | |||
|204.878 | |||
|7 | |||
|3 | |||
|2.333 | |||
| | |||
|- | |||
|12\29 | |||
|205.714 | |||
|12 | |||
|5 | |||
|2.400 | |||
| | |||
|- | |||
|5\12 | |||
|206.897 | |||
|5 | |||
|2 | |||
|2.500 | |||
|Mahuric-Neogothic heartland is from here… | |||
|- | |||
|18\43 | |||
|207.693 | |||
|18 | |||
|7 | |||
|2.571 | |||
| | |||
|- | |||
|13\31 | |||
|208.000 | |||
|13 | |||
|5 | |||
|2.600 | |||
| | |||
|- | |||
|8\19 | |||
|208.696 | |||
|8 | |||
|3 | |||
|2.667 | |||
|…to here | |||
|- | |||
|11\26 | |||
|209.524 | |||
|11 | |||
|4 | |||
|2.750 | |||
| | |||
|- | |||
|14\33 | |||
|210.000 | |||
|14 | |||
|5 | |||
|2.800 | |||
| | |||
|- | |||
|3\7 | |||
|211.755 | |||
|3 | |||
|1 | |||
|3.000 | |||
|Mahuric-Pythagorean ends, Mahuric-Superpyth begins | |||
|- | |||
|22\51 | |||
|212.903 | |||
|22 | |||
|7 | |||
|3.143 | |||
| | |||
|- | |||
|19\44 | |||
|213.084 | |||
|19 | |||
|6 | |||
|3.167 | |||
| | |||
|- | |||
|16\37 | |||
|213.333 | |||
|16 | |||
|5 | |||
|3.200 | |||
| | |||
|- | |||
|13\30 | |||
|213.699 | |||
|13 | |||
|4 | |||
|3.250 | |||
| | |||
|- | |||
|10\23 | |||
|214.286 | |||
|10 | |||
|3 | |||
|3.333 | |||
| | |||
|- | |||
|7\16 | |||
|215.385 | |||
|7 | |||
|2 | |||
|3.500 | |||
| | |||
|- | |||
|11\25 | |||
|216.393 | |||
|11 | |||
|3 | |||
|3.667 | |||
| | |||
|- | |||
|15\34 | |||
|216.867 | |||
|15 | |||
|4 | |||
|3.750 | |||
| | |||
|- | |||
|19\43 | |||
|217.143 | |||
|19 | |||
|5 | |||
|3.800 | |||
| | |||
|- | |||
|4\9 | |||
|218.182 | |||
|4 | |||
|1 | |||
|4.000 | |||
| | |||
|- | |||
|13\29 | |||
|219.718 | |||
|13 | |||
|3 | |||
|4.333 | |||
| | |||
|- | |||
|9\20 | |||
|220.408 | |||
|9 | |||
|2 | |||
|4.500 | |||
| | |||
|- | |||
|14\31 | |||
|221.053 | |||
|14 | |||
|3 | |||
|4.667 | |||
| | |||
|- | |||
|5\11 | |||
|222.222 | |||
|5 | |||
|1 | |||
|5.000 | |||
|Mahuric-Superpyth ends | |||
|- | |||
|11\24 | |||
|223.728 | |||
|11 | |||
|2 | |||
|5.500 | |||
| | |||
|- | |||
|17\37 | |||
|224.176 | |||
|17 | |||
|3 | |||
|5.667 | |||
| | |||
|- | |||
|6\13 | |||
|225.000 | |||
|6 | |||
|1 | |||
|6.000 | |||
| | |||
|- | |||
|1\2 | |||
|240.000 | |||
|1 | |||
|0 | |||
|→ inf | |||
|Paucitonic | |||
|} | |||
==See also== | |||
[[2L 1s (4/3-equivalent)]] - idealized tuning | |||
[[4L 2s (7/4-equivalent)]] - Mixolydian and Dorian hexatonic Archytas temperament | |||
[[4L 2s (39/22-equivalent)]] - Mixolydian and Dorian hexatonic Neogothic temperament | |||
[[4L 2s (Komornik–Loreti constant-equivalent)]] - Mixolydian and Dorian hexatonic Komornik–Loreti temperament | |||
[[4L 2s (9/5-equivalent)]] - Mixolydian and Dorian hexatonic Meantone temperament | |||
[[6L 3s (7/3-equivalent)]] - Mahuric-Archytas temperament | |||
[[6L 3s (26/11-equivalent)]] - Mahuric-Neogothic temperament | |||
[[6L 3s (12/5-equivalent)]] - Mahuric-Meantone temperament | |||
[[8L 4s (28/9-equivalent)]] - Bijou Archytas temperament | |||
[[8L 4s (22/7-equivalent)]] and [[8L 4s (π-equivalent)|8L 4s ([math]π[/math]-equivalent)]] - Bijou Neogothic temperament | |||
[[8L 4s (16/5-equivalent)]] - Bijou Meantone temperament | |||
[[10L 5s (112/27-equivalent)]] - Hyperionic Archytas temperament | |||
[[10L 5s (88/21-equivalent)]] - Hyperionic Neogothic temperament | |||
[[10L 5s (64/15-equivalent)]] - Hyperionic Meantone temperament | |||
[[10L 5s (30/7-equivalent)]] - Hyperionic septimal Meantone temperament | |||
[[12L 6s (16/3-equivalent)]] - Warped Pythagorean Subsextal temperament | |||
[[12L 6s (343/64-equivalent)]] - 1/2 comma Archytas Subsextal temperament] | |||
[[12L 6s (11/2-equivalent)]] - Low undecimal Subsextal temperament | |||
[[ | [[12L 6s (448/81-equivalent)]] - 1/6 comma Archytas Subsextal temperament | ||
[[ | [[12L 6s (4096/729-equivalent)]] - Pythagorean Subsextal temperament | ||
[[ | [[12L 6s (28/5-equivalent)]] - Low septimal (meantone) Subsextal temperament | ||
[[ | [[12L 6s (45/16-equivalent)|12L 6s (256/45-equivalent)]] - 1/6 comma meantone Subsextal temperament | ||
[[12L 6s ( | [[12L 6s (40/7-equivalent)]] - High septimal Subsextal temperament | ||
[[12L 6s ( | [[12L 6s (64/11-equivalent)]] - High undecimal Subsextal temperament | ||
[[12L 6s ( | [[12L 6s (729/125-equivalent)]] - 1/2 comma meantone Subsextal temperament <references /> |
Latest revision as of 19:40, 29 December 2024
2L 1s<perfect fourth>, is a perfect fourth-repeating MOS scale. The notation "<perfect fourth>" means the period of the MOS is a perfect fourth, disambiguating it from octave-repeating 2L 1s.
The generator range is 171.4 to 240 cents, placing it near the diatonic major second, usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents).
In the fourth-repeating version of the diatonic scale, each tone has a perfect fourth above it. The scale has one major chord and two minor chords.
Basic diatonic is in 5ed4/3, which is a very good fourth-based equal tuning similar to 12edo.
Notation
There are 6 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4 and a fourth has too few notes for a structure analogous to the major scale, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple, quintuple or sextuple fourth (minor seventh, tenth, thirteenth or sixteenth or diminished nineteenth), however it does make navigating the genchain harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used.
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard |
---|---|---|---|---|---|---|---|
Fourth | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
F/C/G ut#
Do#, Sol# د#, ص# |
1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
G/D/A reb
Reb, Lab رb, لb |
3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
G/D/A re
Re, La ر, ل |
4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
G/D/A re#
Re#, La# ر,# ل# |
5\11, 230.769 | 4\8, 252.632 | 7\13, 270.967 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
A/E/B mibb
Mibb, Sibb مbb,تbb |
6\11, 276.923 | 6\13, 232.258 | 2\5, 200 | 4\12, 165.517 | 2\7, 141.176 | 2\9, 109.091 | |
A/E/B mib
Mib, Sib مb,تb |
7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 3\5, 300 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 |
A/E/B mi
Mi, Si م, ت |
8\11, 369.231 | 6\8, 378.947 | 10\13, 387.097 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
A/E/B mi#
Mi#, Si# م,#ت# |
9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
F/C/G utb
Dob, Solb دb, صb |
10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
F/C/G ut
Do, Sol د, ص |
11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Seventh | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 | |
Mixolydian | Dorian | |||||||
F/C/G ut#
Sol# ص# |
G/D/A re#
Re# ر# |
1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
G/D/A reb
Lab لb |
A/E/B mib
Mib مb |
3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
G/D/A re
La ل |
A/E/B mi
Mi م |
4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
G/D/A re#
La# ل# |
A/E/B mi#
Mi# م# |
5\11, 230.769 | 4\8, 252.632 | 7\13, 270.967 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
A/E/B mibb
Sibb تbb |
B/F/C fab
Fab فb |
6\11, 276.923 | 6\13, 232.258 | 2\5, 200 | 4\12, 165.517 | 2\7, 141.176 | 2\9, 109.091 | |
A/E/B mib
Sib تb |
B/F/C fa
Fa ف |
7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 3\5, 300 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 |
A/E/B mi
Si ت |
B/F/C fa#
Fa# ف# |
8\11, 369.231 | 6\8, 378.947 | 10\13, 387.097 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
A/E/B mi#
Si# ت# |
B/F/C fax
Fax فx |
9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
B/F/C fab
Dob دb |
C/G/D solb
Solb صb |
10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
B/F/C fa
Do د |
C/G/D sol
Sol ص |
11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
B/F/C fa#
Do# د# |
C/G/D sol#
Sol# ص# |
12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.545 |
C/G/D solb
Reb رb |
D/A/E lab
Lab لb |
14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.455 | |
C/G/D sol
Re ر |
D/A/E la
La ل |
15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.091 |
C/G/D sol#
Re# د# |
D/A/E la#
La# ل# |
16\11, 738.462 | 12\8, 757.895 | 20\13, 774.294 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.727 |
D/A/E lab
Mib مb |
E/B/F síb
Sib تb |
18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.636 | |
D/A/E la
Mi م |
E/B/F sí
Si ت |
19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.727 |
D/A/E la#
Mi# م# |
E/B/F sí#
Si# ت# |
20\11, 923.077 | 15\8, 947.378 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.909 |
F/C/G utb
Solb صb |
G/D/A reb
Reb رb |
21\11, 969.231 | 24\13, 929.033 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.182 | |
F/C/G ut
Sol ص |
G/D/A re
Re ر |
22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.818 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard |
---|---|---|---|---|---|---|---|
Mahur | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
G# | 1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
Jf, Af | 3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
J, A | 4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
J#, A# | 5\11, 230.769 | 4\8, 252.632 | 7\13, 270.968 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
Af, Bf | 7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 | |
A, B | 8\11, 369.231 | 6\8, 378.947 | 10\13, 387.097 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
A#, B# | 9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
Bb, Cf | 10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
B, C | 11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
B#, C# | 12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.545 |
Cf, Qf | 14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.455 | |
C, Q | 15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.091 |
C#, Q# | 16\11, 738.462 | 12\8, 757.895 | 20\13, 774.194 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.727 |
Qf, Df | 18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.636 | |
Q, D | 19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.727 |
Q#, D# | 20\11, 923.077 | 15\8, 947.368 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.909 |
Df, Sf | 21\11, 969.231 | 24\13, 929.033 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.182 | |
D, S | 22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.818 |
D#, S# | 23\11, 1061.538 | 17\8, 1073.684 | 28\13, 1083.871 | 11\5, 1100 | 27\12, 1117.241 | 16\7, 1129.412 | 21\9, 1145.455 |
Ef | 25\11, 1153.846 | 18\8, 1136.842 | 29\13, 1122.581 | 26\12, 1075.862 | 15\7, 1058.824 | 19\9, 1036.364 | |
E | 26\11, 1200 | 19\8, 1200 | 31\13, 1200 | 12\5, 1200 | 29\12, 1200 | 17\7, 1200 | 22\9, 1200 |
E# | 27\11, 1246.154 | 20\8, 1263.158 | 33\13, 1277.419 | 13\5, 1300 | 32\12, 1324.138 | 19\7, 1341.176 | 25\9, 1363.636 |
Ff | 29\11, 1338.462 | 21\8, 1326.316 | 34\13, 1316.129 | 31\12, 1282.759 | 18\7, 1270.588 | 23\9, 1254.545 | |
F | 30\11, 1384.615 | 22\8, 1389.474 | 36\13, 1393.548 | 14\5, 1400 | 34\12, 1406.897 | 20\7, 1411.765 | 26\9, 1418.182 |
F# | 31\11, 1430.769 | 23\8, 1452.632 | 38\13, 1470.968 | 15\5, 1500 | 37\12, 1531.034 | 22\7, 1552.941 | 29\9, 1581.818 |
Gf | 32\11, 1476.923 | 37\13, 1432.258 | 14\5, 1400 | 33\12, 1365.517 | 19\7, 1341.176 | 24\9, 1309.091 | |
G | 33\11, 1523.077 | 24\8, 1515.789 | 39\13, 1509.677 | 15\5, 1500 | 36\12, 1489.655 | 21\7, 1482.353 | 27\9, 1472.727 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard |
---|---|---|---|---|---|---|---|
Bijou | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
0#, E# | 1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
1b, 1d | 3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
1 | 4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
1# | 5\11, 230.769 | 4\8, 252.632 | 7\13, 270.968 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
2b, 2d | 7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 | |
2 | 8\11, 369.231 | 6\8, 378.947 | 10\13, 387.097 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
2# | 9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
3b, 3d | 10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
3 | 11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
3# | 12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.545 |
4b, 4d | 14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.455 | |
4 | 15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.091 |
4# | 16\11, 738.462 | 12\8, 757.895 | 20\13, 774.194 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.727 |
5b, 5d | 18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.636 | |
5 | 19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.727 |
5# | 20\11, 923.077 | 15\8, 947.368 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.909 |
6b, 6d | 21\11, 969.231 | 24\13, 929.033 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.182 | |
6 | 22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.818 |
6# | 23\11, 1061.538 | 17\8, 1073.684 | 28\13, 1083.871 | 11\5, 1100 | 27\12, 1117.241 | 16\7, 1129.412 | 21\9, 1145.455 |
7b, 7d | 25\11, 1153.846 | 18\8, 1136.842 | 29\13, 1122.581 | 26\12, 1075.862 | 15\7, 1058.824 | 19\9, 1036.364 | |
7 | 26\11, 1200 | 19\8, 1200 | 31\13, 1200 | 12\5, 1200 | 29\12, 1200 | 17\7, 1200 | 22\9, 1200 |
7# | 27\11, 1246.154 | 20\8, 1263.158 | 33\13, 1277.419 | 13\5, 1300 | 32\12, 1324.138 | 19\7, 1341.176 | 25\9, 1363.636 |
8b, Gd | 29\11, 1338.462 | 21\8, 1326.316 | 34\13, 1316.129 | 31\12, 1282.759 | 18\7, 1270.588 | 23\9, 1254.545 | |
8, G | 30\11, 1384.615 | 22\8, 1389.474 | 36\13, 1393.548 | 14\5, 1400 | 34\12, 1406.897 | 20\7, 1411.765 | 26\9, 1418.182 |
8#, G# | 31\11, 1430.769 | 23\8, 1452.632 | 38\13, 1470.968 | 15\5, 1500 | 37\12, 1531.034 | 22\7, 1552.941 | 29\9, 1581.818 |
9b, Ad | 32\11, 1476.923 | 37\13, 1432.258 | 14\5, 1400 | 33\12, 1365.517 | 19\7, 1341.176 | 24\9, 1309.091 | |
9, A | 33\11, 1523.077 | 24\8, 1515.789 | 39\13, 1509.677 | 15\5, 1500 | 36\12, 1489.655 | 21\7, 1482.353 | 27\9, 1472.727 |
9#, A# | 34\11, 1569.231 | 25\8, 1578.947 | 41\13, 1587.097 | 16\5, 1600 | 39\12, 1613.793 | 23\7, 1623.529 | 30\9, 1636.364 |
Xb, Bd | 36\11, 1661.538 | 26\8, 1642.105 | 42\13, 1625.806 | 38\12, 1572.034 | 22\7, 1552.941 | 28\9, 1527.27 | |
X, B | 37\11, 1707.692 | 27\8, 1705.263 | 44\13, 1703.226 | 17\5, 1700 | 41\12, 1696.552 | 24\7, 1694.118 | 31\9, 1690.909 |
X#, B# | 38\11, 1753.846 | 28\8, 1768.421 | 46\13, 1780.645 | 18\5, 1800 | 44\12, 1820.690 | 26\7, 1835.294 | 34\9, 1854.545 |
Eb, Dd | 40\11, 1846.154 | 29\8, 1831.579 | 47\13, 1819.355 | 43\12, 1779.310 | 25\7, 1764.706 | 32\9, 1745.455 | |
E, D | 41\11, 1892.308 | 30\8, 1894.737 | 49\13, 1896.774 | 19\5, 1900 | 46\12, 1903.448 | 27\7, 1905.882 | 35\9, 1909.090 |
E#, D# | 42\11, 1938.462 | 31\8, 1957.895 | 51\13, 1974.194 | 20\5, 2000 | 49\12, 2027.586 | 29\7, 2047.059 | 38\9, 2072.727 |
0b, Ed | 43\11, 1984.615 | 50\13, 1935.484 | 19\5, 1900 | 45\12, 1862.069 | 26\7, 1835.294 | 33\9, 1800 | |
0, E | 44\11, 2030.769 | 32\8, 2021.053 | 52\13, 2012.903 | 20\5, 2000 | 48\12, 1986.207 | 28\7, 1976.471 | 36\9, 1963.636 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard |
---|---|---|---|---|---|---|---|
Hyperionic | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
1# | 1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
2f | 3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
2 | 4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
2# | 5\11, 230.769 | 4\8, 252.632 | 7\13, 270.967 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
3f | 7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 | |
3 | 8\11, 369.231 | 6\8, 378.947 | 10\13, 387.098 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
3# | 9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
4f | 10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
4 | 11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
4# | 12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.545 |
5f | 14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.455 | |
5 | 15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.091 |
5# | 16\11, 738.462 | 12\8, 757.895 | 20\13, 774.194 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.727 |
6f | 18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.636 | |
6 | 19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.727 |
6# | 20\11, 923.077 | 15\8, 947.368 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.909 |
7f | 21\11, 969.231 | 24\13, 929.032 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.182 | |
7 | 22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.818 |
7# | 23\11, 1061.538 | 17\8, 1073.684 | 28\13, 1083.871 | 11\5, 1100 | 27\12, 1117.241 | 16\7, 1129.412 | 21\9, 1145.455 |
8f | 25\11, 1153.846 | 18\8, 1136.842 | 29\13, 1122.581 | 26\12, 1075.862 | 15\7, 1058.824 | 19\9, 1036.364 | |
8 | 26\11, 1200 | 19\8, 1200 | 31\13, 1200 | 12\5, 1200 | 29\12, 1200 | 17\7, 1200 | 22\9, 1200 |
8# | 27\11, 1246.154 | 20\8, 1263.158 | 33\13, 1277.419 | 13\5, 1300 | 32\12, 1324.138 | 19\7, 1341.176 | 25\9, 1363.636 |
9f | 29\11, 1338.462 | 21\8, 1326.316 | 34\13, 1316.129 | 31\12, 1282.759 | 18\7, 1270.588 | 23\9, 1254.545 | |
9 | 30\11, 1384.615 | 22\8, 1389.474 | 36\13, 1393.548 | 14\5, 1400 | 34\12, 1406.897 | 20\7, 1411.765 | 26\9, 1418.182 |
9# | 31\11, 1430.769 | 23\8, 1452.632 | 38\13, 1470.968 | 15\5, 1500 | 37\12, 1531.034 | 22\7, 1552.941 | 29\9, 1581.818 |
Af | 32\11, 1476.923 | 37\13, 1432.258 | 14\5, 1400 | 33\12, 1365.517 | 19\7, 1341.176 | 24\9, 1309.091 | |
A | 33\11, 1523.077 | 24\8, 1515.789 | 39\13, 1509.677 | 15\5, 1500 | 36\12, 1489.655 | 21\7, 1482.353 | 27\9, 1472.727 |
A# | 34\11, 1569.231 | 25\8, 1578.947 | 41\13, 1587.097 | 16\5, 1600 | 39\12, 1613.793 | 23\7, 1623.529 | 30\9, 1636.364 |
Bf | 36\11, 1661.538 | 26\8, 1642.105 | 42\13, 1625.806 | 38\12, 1572.034 | 22\7, 1552.941 | 28\9, 1527.27 | |
B | 37\11, 1707.692 | 27\8, 1705.263 | 44\13, 1703.226 | 17\5, 1700 | 41\12, 1696.552 | 24\7, 1694.118 | 31\9, 1690.909 |
B# | 38\11, 1753.846 | 28\8, 1768.421 | 46\13, 1780.645 | 18\5, 1800 | 44\12, 1820.690 | 26\7, 1835.294 | 34\9, 1854.545 |
Cf | 40\11, 1846.154 | 29\8, 1831.579 | 47\13, 1819.355 | 43\12, 1779.310 | 25\7, 1764.706 | 32\9, 1745.455 | |
C | 41\11, 1892.308 | 30\8, 1894.737 | 49\13, 1896.774 | 19\5, 1900 | 46\12, 1903.448 | 27\7, 1905.882 | 35\9, 1909.090 |
C# | 42\11, 1938.462 | 31\8, 1957.895 | 51\13, 1974.194 | 20\5, 2000 | 49\12, 2027.586 | 29\7, 2047.059 | 38\9, 2072.727 |
Df | 43\11, 1984.615 | 50\13, 1935.484 | 19\5, 1900 | 45\12, 1862.069 | 26\7, 1835.294 | 33\9, 1800 | |
D | 44\11, 2030.769 | 32\8, 2021.053 | 52\13, 2012.903 | 20\5, 2000 | 48\12, 1986.207 | 28\7, 1976.471 | 36\9, 1963.636 |
D# | 45\11, 2076.923 | 33\8, 2084.211 | 54\13, 2090.323 | 21\5, 2100 | 51\12, 2110.345 | 30\7, 2117.647 | 39\9, 2127.273 |
Ef | 47\11, 2169.231 | 34\8, 2147.368 | 55\13, 2129.032 | 50\12, 2068.966 | 29\7, 2047.059 | 37\9, 2018.182 | |
E | 48\11, 2215.385 | 35\8, 2210.526 | 57\13, 2206.452 | 22\5, 2200 | 53\12, 2193.103 | 31\7, 2188.235 | 40\9, 2181.818 |
E# | 49\11, 2261.538 | 36\8, 2273.684 | 59\13, 2283.871 | 23\5, 2300 | 56\12, 2317.241 | 33\7, 2329.412 | 43\9, 2345.455 |
Ff | 51\11, 2353.846 | 37\8, 2336.842 | 61\13, 2322.581 | 55\12, 2275.864 | 32\7, 2258.824 | 41\9, 2236.364 | |
F | 52\11, 2400 | 38\8, 2400 | 62\13, 2400 | 24\5, 2400 | 58\12, 2400 | 34\7, 2400 | 44\9, 2400 |
F# | 53\11, 2446.154 | 39\8, 2463.158 | 64\13, 2477.419 | 25\5, 2500 | 61\12, 2524.138 | 36\7, 2541.176 | 47/9, 2563.636 |
1f | 54\11, 2492.308 | 63\13, 2438.710 | 24\5, 2400 | 57\12, 2358.621 | 33\7, 2329.412 | 42\9, 2390.909 | |
1 | 55\11, 2538.462 | 40\8, 2526.316 | 65\13, 2516.129 | 25\5, 2500 | 60\12, 2482.759 | 35\7, 2470.588 | 45\9, 2454.545 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard |
---|---|---|---|---|---|---|---|
Subsextal | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
0# | 1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
1f | 3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
1 | 4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
1# | 5\11, 230.769 | 4\8, 252.632 | 7\13, 270.967 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
2f | 7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 | |
2 | 8\11, 369.231 | 6\8, 378.947 | 10\13, 387.098 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
2# | 9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
3f | 10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
3 | 11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
3# | 12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.545 |
4f | 14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.455 | |
4 | 15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.091 |
4# | 16\11, 738.462 | 12\8, 757.895 | 20\13, 774.194 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.727 |
5f | 18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.636 | |
5 | 19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.727 |
5# | 20\11, 923.077 | 15\8, 947.368 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.909 |
6f | 21\11, 969.231 | 24\13, 929.032 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.182 | |
6 | 22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.818 |
6# | 23\11, 1061.538 | 17\8, 1073.684 | 28\13, 1083.871 | 11\5, 1100 | 27\12, 1117.241 | 16\7, 1129.412 | 21\9, 1145.455 |
7f | 25\11, 1153.846 | 18\8, 1136.842 | 29\13, 1122.581 | 26\12, 1075.862 | 15\7, 1058.824 | 19\9, 1036.364 | |
7 | 26\11, 1200 | 19\8, 1200 | 31\13, 1200 | 12\5, 1200 | 29\12, 1200 | 17\7, 1200 | 22\9, 1200 |
7# | 27\11, 1246.154 | 20\8, 1263.158 | 33\13, 1277.419 | 13\5, 1300 | 32\12, 1324.138 | 19\7, 1341.176 | 25\9, 1363.636 |
8f | 29\11, 1338.462 | 21\8, 1326.316 | 34\13, 1316.129 | 31\12, 1282.759 | 18\7, 1270.588 | 23\9, 1254.545 | |
8 | 30\11, 1384.615 | 22\8, 1389.474 | 36\13, 1393.548 | 14\5, 1400 | 34\12, 1406.897 | 20\7, 1411.765 | 26\9, 1418.182 |
8# | 31\11, 1430.769 | 23\8, 1452.632 | 38\13, 1470.968 | 15\5, 1500 | 37\12, 1531.034 | 22\7, 1552.941 | 29\9, 1581.818 |
9f | 32\11, 1476.923 | 37\13, 1432.258 | 14\5, 1400 | 33\12, 1365.517 | 19\7, 1341.176 | 24\9, 1309.091 | |
9 | 33\11, 1523.077 | 24\8, 1515.789 | 39\13, 1509.677 | 15\5, 1500 | 36\12, 1489.655 | 21\7, 1482.353 | 27\9, 1472.727 |
9# | 34\11, 1569.231 | 25\8, 1578.947 | 41\13, 1587.097 | 16\5, 1600 | 39\12, 1613.793 | 23\7, 1623.529 | 30\9, 1636.364 |
Xb | 36\11, 1661.538 | 26\8, 1642.105 | 42\13, 1625.806 | 38\12, 1572.034 | 22\7, 1552.941 | 28\9, 1527.27 | |
X | 37\11, 1707.692 | 27\8, 1705.263 | 44\13, 1703.226 | 17\5, 1700 | 41\12, 1696.552 | 24\7, 1694.118 | 31\9, 1690.909 |
X# | 38\11, 1753.846 | 28\8, 1768.421 | 46\13, 1780.645 | 18\5, 1800 | 44\12, 1820.690 | 26\7, 1835.294 | 34\9, 1854.545 |
ɛf | 40\11, 1846.154 | 29\8, 1831.579 | 47\13, 1819.355 | 43\12, 1779.310 | 25\7, 1764.706 | 32\9, 1745.455 | |
ɛ | 41\11, 1892.308 | 30\8, 1894.737 | 49\13, 1896.774 | 19\5, 1900 | 46\12, 1903.448 | 27\7, 1905.882 | 35\9, 1909.090 |
ɛ# | 42\11, 1938.462 | 31\8, 1957.895 | 51\13, 1974.194 | 20\5, 2000 | 49\12, 2027.586 | 29\7, 2047.059 | 38\9, 2072.727 |
Af | 43\11, 1984.615 | 50\13, 1935.484 | 19\5, 1900 | 45\12, 1862.069 | 26\7, 1835.294 | 33\9, 1800 | |
A | 44\11, 2030.769 | 32\8, 2021.053 | 52\13, 2012.903 | 20\5, 2000 | 48\12, 1986.207 | 28\7, 1976.471 | 36\9, 1963.636 |
A# | 45\11, 2076.923 | 33\8, 2084.211 | 54\13, 2090.323 | 21\5, 2100 | 51\12, 2110.345 | 30\7, 2117.647 | 39\9, 2127.273 |
Bf | 47\11, 2169.231 | 34\8, 2147.368 | 55\13, 2129.032 | 50\12, 2068.966 | 29\7, 2047.059 | 37\9, 2018.182 | |
B | 48\11, 2215.385 | 35\8, 2210.526 | 57\13, 2206.452 | 22\5, 2200 | 53\12, 2193.103 | 31\7, 2188.235 | 40\9, 2181.818 |
B# | 49\11, 2261.538 | 36\8, 2273.684 | 59\13, 2283.871 | 23\5, 2300 | 56\12, 2317.241 | 33\7, 2329.412 | 43\9, 2345.455 |
Cf | 51\11, 2353.846 | 37\8, 2336.842 | 61\13, 2322.581 | 55\12, 2275.864 | 32\7, 2258.824 | 41\9, 2236.364 | |
C | 52\11, 2400 | 38\8, 2400 | 62\13, 2400 | 24\5, 2400 | 58\12, 2400 | 34\7, 2400 | 44\9, 2400 |
C# | 53\11, 2446.154 | 39\8, 2463.158 | 64\13, 2477.419 | 25\5, 2500 | 61\12, 2524.138 | 36\7, 2541.176 | 47/9, 2563.636 |
Df | 54\11, 2492.308 | 63\13, 2438.710 | 24\5, 2400 | 57\12, 2358.621 | 33\7, 2329.412 | 42\9, 2390.909 | |
D | 55\11, 2538.462 | 40\8, 2526.316 | 65\13, 2516.129 | 25\5, 2500 | 60\12, 2482.759 | 35\7, 2470.588 | 45\9, 2454.545 |
D# | 56\11, 2584.615 | 41\8, 2589.474 | 67\13, 2593.548 | 26\5, 2600 | 63\12, 2606.897 | 37\7, 2611.765 | 48\9, 2618.182 |
Ef | 58\11, 2676.923 | 42\8, 2652.632 | 69\13, 2670.968 | 62\12, 2565.517 | 36\7, 2541.176 | 46\9, 2509.091 | |
E | 59\11, 2723.077 | 43\8, 2715.789 | 70\13, 2709.677 | 27\5, 2700 | 65\12, 2689.655 | 38\7, 2682.353 | 49\9, 2672.727 |
E# | 60\11, 2769.231 | 44\8, 2778.947 | 72\13, 2787.097 | 28\5, 2800 | 68\12, 2813.793 | 40\7, 2823.529 | 52\9, 2836.364 |
Ff | 62\11, 2861.538 | 45\8, 2842.105 | 73\13, 2825.806 | 67\12, 2772.034 | 39\7, 2752.941 | 50\9, 2727.273 | |
F | 63\11, 2907.692 | 46\8, 2905.263 | 75\13, 2903.226 | 29\5, 2900 | 70\12, 2896.552 | 41\7, 2894.118 | 53\9, 2890.909 |
F# | 64\11, 2953.846 | 47\8, 2968.421 | 77\13, 2980.645 | 30\5, 3000 | 73\12, 3020.690 | 43\7, 3035.294 | 55\9, 3000 |
0f | 65\11, 3000 | 76\13, 2941.935 | 29\5, 2900 | 69\29, 2855.172 | 40\7, 2823.529 | 52\9, 2836.364 | |
0 | 66\11, 3046.154 | 48\8, 3031.579 | 78\13, 3019.355 | 30\5, 3000 | 72\12, 2979.310 | 42\7, 2964.706 | 54\9, 2945.455 |
Intervals
Generators | Fourth notation | Interval category name | Generators | Notation of 4/3 inverse | Interval category name |
---|---|---|---|---|---|
The 3-note MOS has the following intervals (from some root): | |||||
0 | F/C/G ut
Do, Sol د, ص |
perfect unison | 0 | F/C/G ut
Do, Sol د, ص |
perfect fourth |
1 | A/E/B mib
Mib, Sib صb, مb |
diminished third | -1 | G/D/A re
Re, La ر, ل |
perfect second |
2 | G/D/A reb
Reb, Lab رb, لb |
diminished second | -2 | A/E/B mi
Mi, Si ص, م |
perfect third |
The chromatic 5-note MOS also has the following intervals (from some root): | |||||
3 | F/C/G utb
Dob, Solb دb, صb |
diminished fourth | -3 | F/C/G ut#
Do#, Sol# د, #ص# |
augmented unison (chroma) |
4 | A/E/B mibb
Mibb, Sibb مbb, صbb |
doubly diminished third | -4 | G/D/A re#
Re#, La# ر ,# ل# |
augmented second |
Genchain
The generator chain for this scale is as follows:
A/E/B mibb | F/C/G utb | G/D/A reb | A/E/B mib | F/C/G ut | G/D/A re | A/E/B mi | F/C/G ut# | G/D/A re# | A/E/B mi# |
Mibb
Sibb |
Dob
Solb |
Reb
Lab |
Mib
Sib |
Do
Sol |
Re
La |
Mi
Si |
Do#
Sol# |
Re#
La# |
Mi#
Si# |
مbb
تbb |
دb
صb |
رb
لb |
مb
تb |
د
ص |
ر
ل |
م
ت |
د#
ص# |
ر#
ل# |
م#
ت# |
dd3 | d4 | d2 | d3 | P1 | P2 | P3 | A1 | A2 | A3 |
Modes
The mode names are based on the species of fourth:
Mode | Scale | UDP | Interval type | |
---|---|---|---|---|
name | pattern | notation | 2nd | 3rd |
Major | LLs | 2|0 | P | P |
Minor | LsL | 1|1 | P | d |
Phrygian | sLL | 0|2 | d | d |
Temperaments
The most basic rank-2 temperament interpretation of diatonic is Mahuric. The name "Mahuric" comes from the “Mahur” scale in Persian and Arabic music. The major triad is spelled root-2g-(p+g)
(p = 4/3, g = the whole tone) and approximates 4:5:6 in pental interpretations or 14:18:21 in septimal ones. Basic ~5ed4/3 fits both interpretations.
Mahuric-Meantone
Subgroup: 4/3.5/4.3/2
POL2 generator: ~9/8 = 193.6725¢
Mapping: [⟨1 0 1], ⟨0 2 1]]
Optimal ET sequence: 15ed12/5, 24ed12/5, 39ed12/5 ≈ 5ed4/3, 8ed4/3, 13ed4/3
Mahuric-Superpyth
Subgroup: 4/3.9/7.3/2
POL2 generator: ~8/7 = 216.7325¢
Mapping: [⟨1 0 1], ⟨0 2 1]]
Optimal ET sequence: 15ed7/3, 21ed7/3, 27ed7/3, 33ed7/3 ≈ 5ed4/3, 7ed4/3, 9ed4/3, 11ed4/3
Scale tree
The spectrum looks like this:
Generator
(bright) |
Cents | L | s | L/s | Comments |
---|---|---|---|---|---|
1\3 | 171.429 | 1 | 1 | 1.000 | Equalised |
6\17 | 180.000 | 6 | 5 | 1.200 | |
5\14 | 181.818 | 5 | 4 | 1.250 | |
14\39 | 182.609 | 14 | 11 | 1.273 | |
9\25 | 183.051 | 9 | 7 | 1.286 | |
4\11 | 184.615 | 4 | 3 | 1.333 | |
11\30 | 185.915 | 11 | 8 | 1.375 | |
7\19 | 186.667 | 7 | 5 | 1.400 | |
10\27 | 187.500 | 10 | 7 | 1.429 | |
13\35 | 187.952 | 13 | 9 | 1.444 | |
16\43 | 188.253 | 16 | 11 | 1.4545 | |
3\8 | 189.474 | 3 | 2 | 1.500 | Mahuric-Meantone starts here |
14\37 | 190.909 | 14 | 9 | 1.556 | |
11\29 | 191.304 | 11 | 7 | 1.571 | |
8\21 | 192.000 | 8 | 5 | 1.600 | |
5\13 | 193.548 | 5 | 3 | 1.667 | |
12\31 | 194.595 | 12 | 7 | 1.714 | |
7\18 | 195.348 | 7 | 4 | 1.750 | |
9\23 | 196.364 | 9 | 5 | 1.800 | |
11\28 | 197.015 | 11 | 6 | 1.833 | |
13\33 | 197.468 | 13 | 7 | 1.857 | |
15\38 | 197.802 | 15 | 8 | 1.875 | |
17\43 | 198.058 | 17 | 9 | 1.889 | |
19\48 | 198.261 | 19 | 10 | 1.900 | |
21\53 | 198.425 | 21 | 11 | 1.909 | |
23\58 | 198.561 | 23 | 12 | 1.917 | |
25\63 | 198.675 | 25 | 13 | 1.923 | |
27\68 | 198.773 | 27 | 14 | 1.929 | |
29\73 | 198.857 | 29 | 15 | 1.933 | |
31\78 | 198.930 | 31 | 16 | 1.9375 | |
33\83 | 198.995 | 33 | 17 | 1.941 | |
35\88 | 199.052 | 35 | 18 | 1.944 | |
2\5 | 200.000 | 2 | 1 | 2.000 | Mahuric-Meantone ends, Mahuric-Pythagorean begins |
17\42 | 201.980 | 17 | 8 | 2.125 | |
15\37 | 202.247 | 15 | 7 | 2.143 | |
13\32 | 202.597 | 13 | 6 | 2.167 | |
11\27 | 203.077 | 11 | 5 | 2.200 | |
9\22 | 203.774 | 9 | 4 | 2.250 | |
7\17 | 204.878 | 7 | 3 | 2.333 | |
12\29 | 205.714 | 12 | 5 | 2.400 | |
5\12 | 206.897 | 5 | 2 | 2.500 | Mahuric-Neogothic heartland is from here… |
18\43 | 207.693 | 18 | 7 | 2.571 | |
13\31 | 208.000 | 13 | 5 | 2.600 | |
8\19 | 208.696 | 8 | 3 | 2.667 | …to here |
11\26 | 209.524 | 11 | 4 | 2.750 | |
14\33 | 210.000 | 14 | 5 | 2.800 | |
3\7 | 211.755 | 3 | 1 | 3.000 | Mahuric-Pythagorean ends, Mahuric-Superpyth begins |
22\51 | 212.903 | 22 | 7 | 3.143 | |
19\44 | 213.084 | 19 | 6 | 3.167 | |
16\37 | 213.333 | 16 | 5 | 3.200 | |
13\30 | 213.699 | 13 | 4 | 3.250 | |
10\23 | 214.286 | 10 | 3 | 3.333 | |
7\16 | 215.385 | 7 | 2 | 3.500 | |
11\25 | 216.393 | 11 | 3 | 3.667 | |
15\34 | 216.867 | 15 | 4 | 3.750 | |
19\43 | 217.143 | 19 | 5 | 3.800 | |
4\9 | 218.182 | 4 | 1 | 4.000 | |
13\29 | 219.718 | 13 | 3 | 4.333 | |
9\20 | 220.408 | 9 | 2 | 4.500 | |
14\31 | 221.053 | 14 | 3 | 4.667 | |
5\11 | 222.222 | 5 | 1 | 5.000 | Mahuric-Superpyth ends |
11\24 | 223.728 | 11 | 2 | 5.500 | |
17\37 | 224.176 | 17 | 3 | 5.667 | |
6\13 | 225.000 | 6 | 1 | 6.000 | |
1\2 | 240.000 | 1 | 0 | → inf | Paucitonic |
See also
2L 1s (4/3-equivalent) - idealized tuning
4L 2s (7/4-equivalent) - Mixolydian and Dorian hexatonic Archytas temperament
4L 2s (39/22-equivalent) - Mixolydian and Dorian hexatonic Neogothic temperament
4L 2s (Komornik–Loreti constant-equivalent) - Mixolydian and Dorian hexatonic Komornik–Loreti temperament
4L 2s (9/5-equivalent) - Mixolydian and Dorian hexatonic Meantone temperament
6L 3s (7/3-equivalent) - Mahuric-Archytas temperament
6L 3s (26/11-equivalent) - Mahuric-Neogothic temperament
6L 3s (12/5-equivalent) - Mahuric-Meantone temperament
8L 4s (28/9-equivalent) - Bijou Archytas temperament
8L 4s (22/7-equivalent) and 8L 4s ([math]π[/math]-equivalent) - Bijou Neogothic temperament
8L 4s (16/5-equivalent) - Bijou Meantone temperament
10L 5s (112/27-equivalent) - Hyperionic Archytas temperament
10L 5s (88/21-equivalent) - Hyperionic Neogothic temperament
10L 5s (64/15-equivalent) - Hyperionic Meantone temperament
10L 5s (30/7-equivalent) - Hyperionic septimal Meantone temperament
12L 6s (16/3-equivalent) - Warped Pythagorean Subsextal temperament
12L 6s (343/64-equivalent) - 1/2 comma Archytas Subsextal temperament]
12L 6s (11/2-equivalent) - Low undecimal Subsextal temperament
12L 6s (448/81-equivalent) - 1/6 comma Archytas Subsextal temperament
12L 6s (4096/729-equivalent) - Pythagorean Subsextal temperament
12L 6s (28/5-equivalent) - Low septimal (meantone) Subsextal temperament
12L 6s (256/45-equivalent) - 1/6 comma meantone Subsextal temperament
12L 6s (40/7-equivalent) - High septimal Subsextal temperament
12L 6s (64/11-equivalent) - High undecimal Subsextal temperament
12L 6s (729/125-equivalent) - 1/2 comma meantone Subsextal temperament