User:Moremajorthanmajor/7L 2s (major tenth-equivalent): Difference between revisions
Jump to navigation
Jump to search
CompactStar (talk | contribs) No edit summary |
|||
(13 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
This page is about a [[MOS scale]] with a period of a major tenth and 7 large steps and 2 small steps arranged LLLsLLLLs (or any rotation of that, such as LLsLLLsLL). | |||
==Name== | |||
The author suggests the name '''Terra Rubra''' for this scale. | |||
==Temperaments== | ==Temperaments== | ||
=== Terra Rubra-Meantone === | |||
[[Subgroup]]: 5/2.2.3 | |||
[[Comma]] list: [[81/80]] | |||
[[POL2]] generator: ~3/2 = 696.8737¢ | |||
[[Mapping]]: [⟨1 1 1], ⟨0 -2 -1]] | |||
[[Optimal ET sequence]]: [[9ed5/2]], [[16ed5/2]], [[25ed5/2]] | |||
=== Terra Rubra-Superpyth === | |||
[[Subgroup]]: 18/7.2.3 | |||
[[Comma]] list: [[64/63]] | |||
[[POL2]] generator: ~3/2 = 708.4011¢ | |||
[[Mapping]]: [⟨1 1 1], ⟨0 -2 -1]] | |||
[[Optimal ET sequence]]: [[7ed18/7]], [[16ed18/7]], [[23ed18/7]], [[30ed18/7]] | |||
==Scale tree== | ==Scale tree== | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
!Generator | !Generator | ||
! | ! |Generator size | ||
!L | !L | ||
!s | !s | ||
!Comments | !Comments | ||
|- | |- | ||
| | | |4\[[7ed5/2|7]] | ||
| | | |<u>960.000</u> | ||
|1 | |1 | ||
|0 | |||
| | |||
|- | |||
|25\44 | |||
|<u>937.500</u> | |||
|6 | |||
|1 | |1 | ||
| | | | ||
|- | |- | ||
| | |71\129 | ||
| | |<u>936.263</u> | ||
|17 | |||
|3 | |||
| | |||
|- | |||
|46\81 | |||
|<u>935.593</u> | |||
|11 | |||
|2 | |||
| | |||
|- | |||
|67\118 | |||
|<u>934.884</u> | |||
|16 | |||
|3 | |||
| | |||
|- | |||
| |21\37 | |||
| |<u>933.333</u> | |||
|5 | |5 | ||
|1 | |||
| | | |||
|- | |||
|80\141 | |||
|<u>932.039</u> | |||
|19 | |||
|4 | |4 | ||
| | | | ||
|- | |- | ||
| | |59\104 | ||
| | |<u>931.579</u> | ||
|14 | |||
|3 | |||
| | |||
|- | |||
|38\67 | |||
|<u>930.612</u> | |||
|9 | |||
|2 | |||
| | |||
|- | |||
|55\97 | |||
|<u>929.577</u> | |||
|13 | |||
|3 | |||
| | |||
|- | |||
|72\127 | |||
|<u>929.032</u> | |||
|17 | |||
|4 | |||
| | |||
|- | |||
|89\157 | |||
|<u>928.696</u> | |||
|21 | |||
|5 | |||
| | |||
|- | |||
| |17\30 | |||
| |<u>927.273</u> | |||
|4 | |||
|1 | |||
| | | |||
|- | |||
|115\203 | |||
|<u>926.174</u> | |||
|27 | |||
|7 | |||
| | |||
|- | |||
|98\173 | |||
|<u>925.984</u> | |||
|23 | |||
|6 | |||
| | |||
|- | |||
|81\143 | |||
|<u>925.714</u> | |||
|19 | |||
|5 | |||
| | |||
|- | |||
|64\113 | |||
|<u>925.301</u> | |||
|15 | |||
|4 | |4 | ||
| | |||
|- | |||
|47\83 | |||
|<u>924.590</u> | |||
|11 | |||
|3 | |3 | ||
| | | | ||
|- | |- | ||
| | | |30\53 | ||
| | | |<u>923.077</u> | ||
|7 | |7 | ||
|2 | |||
| | | |||
|- | |||
|73\129 | |||
|<u>922.105</u> | |||
|17 | |||
|5 | |||
| | |||
|- | |||
| |43\76 | |||
| |<u>921.429</u> | |||
|10 | |||
|3 | |||
| | | |||
|- | |||
| |56\99 | |||
| |<u>920.548</u> | |||
|13 | |||
|4 | |||
| | | |||
|- | |||
| |69\122 | |||
| |<u>920.000</u> | |||
|16 | |||
|5 | |5 | ||
|1. | | | | ||
|- | |||
| |82\145 | |||
| |<u>919.626</u> | |||
|19 | |||
|6 | |||
| | | |||
|- | |||
| |95\168 | |||
| |<u>919.355</u> | |||
|22 | |||
|7 | |||
| | | |||
|- | |||
| | | |||
| |<u>919.340</u> | |||
|π | |||
|1 | |||
| | | |||
|- | |||
| |108\191 | |||
| |<u>919.149</u> | |||
|25 | |||
|8 | |||
| | | |||
|- | |||
| |121\214 | |||
| |<u>918.987</u> | |||
|28 | |||
|9 | |||
| | | |||
|- | |||
| |13\23 | |||
| |<u>917.647</u> | |||
|3 | |||
|1 | |||
| | | |||
|- | |||
| |100\177 | |||
| |<u>916.031</u> | |||
|23 | |||
|8 | |||
| | | |||
|- | |||
| |87\154 | |||
| |<u>915.789</u> | |||
|20 | |||
|7 | |||
| | | |||
|- | |||
| |74\131 | |||
| |<u>915.464</u> | |||
|17 | |||
|6 | |||
| | | |||
|- | |||
| |61\108 | |||
| |<u>915.000</u> | |||
|14 | |||
|5 | |||
| | | |||
|- | |||
| |48\85 | |||
| |<u>914.286</u> | |||
|11 | |||
|4 | |||
| | | |||
|- | |||
| | | |||
| |<u>913.821</u> | |||
|e | |||
|1 | |||
| |L/s = e | |||
|- | |||
| |35\62 | |||
| |<u>913.043</u> | |||
|8 | |||
|3 | |||
| | | |||
|- | |||
| | | |||
| |<u>912.287</u> | |||
|<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ</span>+1 | |||
|1 | |||
| |Split <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ</span> superdiatonic relation | |||
|- | |||
| |57\101 | |||
| |<u>912.000</u> | |||
|13 | |||
|5 | |||
| | | |||
|- | |||
|79\140 | |||
|<u>911.538</u> | |||
|18 | |||
|7 | |||
| | | | ||
|- | |- | ||
| | | |22\39 | ||
| | | |<u>910.345</u> | ||
|5 | |||
|2 | |||
| | | |||
|- | |||
| |75\133 | |||
| |<u>909.091</u> | |||
|17 | |||
|7 | |||
| | | |||
|- | |||
| |53\94 | |||
| |<u>908.571</u> | |||
|12 | |||
|5 | |||
| | | |||
|- | |||
| |31\55 | |||
| |<u>907.317</u> | |||
|7 | |||
|3 | |3 | ||
| | | |||
|- | |||
|71\126 | |||
|<u>906.383</u> | |||
|16 | |||
|7 | |||
| | |||
|- | |||
| |40\71 | |||
| |<u>905.660</u> | |||
|9 | |||
|4 | |||
| | | |||
|- | |||
| |… | |||
| |… | |||
|… | |||
|… | |||
| | | |||
|- | |||
|229\305 | |||
|<u>900.983</u> | |||
|51 | |||
|25 | |||
| | |||
|- | |||
| |9\16 | |||
| |<u>900.000</u> | |||
|2 | |2 | ||
|1. | |1 | ||
| |<span style="display: block; text-align: left;">'''[BOUNDARY OF PROPRIETY: smaller generators are strictly proper]'''</span> | |||
|- | |||
|230\397 | |||
|<u>899.023</u> | |||
|51 | |||
|26 | |||
| | |||
|- | |||
|… | |||
|… | |||
|… | |||
|… | |||
| | |||
|- | |||
| |41\73 | |||
| |<u>894.545</u> | |||
|9 | |||
|5 | |||
| | | |||
|- | |||
| |32\57 | |||
| |<u>893.023</u> | |||
|7 | |||
|4 | |||
| |<span style="font-size: 12.8000001907349px;"><big>the 'Commatic' version of Terra Rubra, because its high accuracy of the 16/15 interval, the note '2b'</big></span> | |||
|- | |||
| | | |||
| |<u>892.459</u> | |||
| | |||
| | |||
| | | |||
|- | |||
|87\155 | |||
|<u>892.307</u> | |||
|19 | |||
|11 | |||
| | |||
|- | |||
| |55\98 | |||
| |<u>891.892</u> | |||
|12 | |||
|7 | |||
| | | |||
|- | |||
| |23\41 | |||
| |<u>890.323</u> | |||
|5 | |||
|3 | |||
| |Golden Terra Rubra 1/5-tone | |||
|- | |||
|83\148 | |||
|<u>889.286</u> | |||
|18 | |||
|11 | |||
| | |||
|- | |||
| |60\107 | |||
| |<u>888.889</u> | |||
|13 | |||
|8 | |||
| |Golden Terra Rubra 1/13-tone | |||
|- | |||
| | | |||
| |<u>888.643</u> | |||
|<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ</span> | |||
|1 | |||
| |GOLDEN Terra Rubra (L/s = <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ)</span> | |||
|- | |||
| |37\66 | |||
| |<u>888.000</u> | |||
|8 | |||
|5 | |||
| |Golden Terra Rubra 1/8-tone | |||
|- | |||
|88\157 | |||
|<u>887.395</u> | |||
|19 | |||
|12 | |||
| | | | ||
|- | |- | ||
|14\ | | |51\91 | ||
| |<u>886.957</u> | |||
|11 | |||
|7 | |||
| | | |||
|- | |||
| |65\116 | |||
| |<u>886.364</u> | |||
|14 | |||
|9 | |||
| | | |||
|- | |||
| |79\141 | |||
| |<u>885.981</u> | |||
|17 | |||
|11 | |||
| | | |||
|- | |||
| |93\166 | |||
| |<u>885.714</u> | |||
|20 | |||
|13 | |||
| | | |||
|- | |||
| |14\25 | |||
| |<u>884.211</u> | |||
|3 | |||
|2 | |||
| |Golden Terra Rubra 1/3-tone | |||
|- | |||
| |117\209 | |||
| |<u>883.019</u> | |||
|25 | |||
|17 | |||
| | | |||
|- | |||
| |103\184 | |||
| |<u>882.857</u> | |||
|22 | |||
|15 | |||
| | | |||
|- | |||
| |89\159 | |||
| |<u>882.645</u> | |||
|19 | |||
|13 | |||
| | | |||
|- | |||
| |75\134 | |||
| |<u>882.353</u> | |||
|16 | |||
|11 | |||
| | | |||
|- | |||
| |61\109 | |||
| |<u>881.928</u> | |||
|13 | |||
|9 | |||
| | | |||
|- | |||
| |47\84 | |||
| |<u>881.250</u> | |||
|10 | |||
|7 | |||
| | | |||
|- | |||
| |33\59 | |||
| |<u>880.000</u> | |||
|7 | |||
|5 | |||
| | | |||
|- | |||
|85\152 | |||
|<u>879.310</u> | |||
|18 | |||
|13 | |||
| | | | ||
|- | |||
|52\93 | |||
|<u>878.873</u> | |||
|11 | |||
|8 | |8 | ||
| | |||
|- | |||
|71\127 | |||
|<u>878.351</u> | |||
|15 | |||
|11 | |||
| | |||
|- | |||
|90\161 | |||
|<u>878.049</u> | |||
|19 | |||
|14 | |||
| | |||
|- | |||
|109\195 | |||
|<u>877.852</u> | |||
|23 | |||
|17 | |||
| | |||
|- | |||
| |19\34 | |||
| |<u>876.923</u> | |||
|4 | |||
|3 | |||
| | | |||
|- | |||
|62\111 | |||
|<u>875.294</u> | |||
|13 | |||
|10 | |||
| | |||
|- | |||
|43\77 | |||
|<u>874.576</u> | |||
|9 | |||
|7 | |||
| | |||
|- | |||
|67\120 | |||
|<u>873.913</u> | |||
|14 | |||
|11 | |||
| | |||
|- | |||
|24\43 | |||
|<u>872.727</u> | |||
|5 | |5 | ||
| | |4 | ||
| | |||
|- | |||
|53\95 | |||
|<u>871.233</u> | |||
|11 | |||
|9 | |||
| | | | ||
|- | |- | ||
|29\52 | |||
|<u>870.000</u> | |||
|6 | |||
|5 | |||
| | | | ||
|- | |||
| |5\[[9edo|9]] | |||
| |<u>857.142</u> | |||
|1 | |||
|0 | |||
| | | |||
|} | |} | ||
== See also == | |||
[[7L 2s (5/2-equivalent)]] - idealized meantone tuning | |||
[[7L 2s (81/32-equivalent)]] - Pythagorean tuning | |||
[[7L 2s (28/11-equivalent)]] - Neogothic tuning | |||
[[7L 2s (18/7-equivalent)]] - idealized Archytas tuning |
Latest revision as of 19:06, 29 December 2024
This page is about a MOS scale with a period of a major tenth and 7 large steps and 2 small steps arranged LLLsLLLLs (or any rotation of that, such as LLsLLLsLL).
Name
The author suggests the name Terra Rubra for this scale.
Temperaments
Terra Rubra-Meantone
Subgroup: 5/2.2.3
POL2 generator: ~3/2 = 696.8737¢
Mapping: [⟨1 1 1], ⟨0 -2 -1]]
Optimal ET sequence: 9ed5/2, 16ed5/2, 25ed5/2
Terra Rubra-Superpyth
Subgroup: 18/7.2.3
POL2 generator: ~3/2 = 708.4011¢
Mapping: [⟨1 1 1], ⟨0 -2 -1]]
Optimal ET sequence: 7ed18/7, 16ed18/7, 23ed18/7, 30ed18/7
Scale tree
Generator | Generator size | L | s | Comments |
---|---|---|---|---|
4\7 | 960.000 | 1 | 0 | |
25\44 | 937.500 | 6 | 1 | |
71\129 | 936.263 | 17 | 3 | |
46\81 | 935.593 | 11 | 2 | |
67\118 | 934.884 | 16 | 3 | |
21\37 | 933.333 | 5 | 1 | |
80\141 | 932.039 | 19 | 4 | |
59\104 | 931.579 | 14 | 3 | |
38\67 | 930.612 | 9 | 2 | |
55\97 | 929.577 | 13 | 3 | |
72\127 | 929.032 | 17 | 4 | |
89\157 | 928.696 | 21 | 5 | |
17\30 | 927.273 | 4 | 1 | |
115\203 | 926.174 | 27 | 7 | |
98\173 | 925.984 | 23 | 6 | |
81\143 | 925.714 | 19 | 5 | |
64\113 | 925.301 | 15 | 4 | |
47\83 | 924.590 | 11 | 3 | |
30\53 | 923.077 | 7 | 2 | |
73\129 | 922.105 | 17 | 5 | |
43\76 | 921.429 | 10 | 3 | |
56\99 | 920.548 | 13 | 4 | |
69\122 | 920.000 | 16 | 5 | |
82\145 | 919.626 | 19 | 6 | |
95\168 | 919.355 | 22 | 7 | |
919.340 | π | 1 | ||
108\191 | 919.149 | 25 | 8 | |
121\214 | 918.987 | 28 | 9 | |
13\23 | 917.647 | 3 | 1 | |
100\177 | 916.031 | 23 | 8 | |
87\154 | 915.789 | 20 | 7 | |
74\131 | 915.464 | 17 | 6 | |
61\108 | 915.000 | 14 | 5 | |
48\85 | 914.286 | 11 | 4 | |
913.821 | e | 1 | L/s = e | |
35\62 | 913.043 | 8 | 3 | |
912.287 | φ+1 | 1 | Split φ superdiatonic relation | |
57\101 | 912.000 | 13 | 5 | |
79\140 | 911.538 | 18 | 7 | |
22\39 | 910.345 | 5 | 2 | |
75\133 | 909.091 | 17 | 7 | |
53\94 | 908.571 | 12 | 5 | |
31\55 | 907.317 | 7 | 3 | |
71\126 | 906.383 | 16 | 7 | |
40\71 | 905.660 | 9 | 4 | |
… | … | … | … | |
229\305 | 900.983 | 51 | 25 | |
9\16 | 900.000 | 2 | 1 | [BOUNDARY OF PROPRIETY: smaller generators are strictly proper] |
230\397 | 899.023 | 51 | 26 | |
… | … | … | … | |
41\73 | 894.545 | 9 | 5 | |
32\57 | 893.023 | 7 | 4 | the 'Commatic' version of Terra Rubra, because its high accuracy of the 16/15 interval, the note '2b' |
892.459 | ||||
87\155 | 892.307 | 19 | 11 | |
55\98 | 891.892 | 12 | 7 | |
23\41 | 890.323 | 5 | 3 | Golden Terra Rubra 1/5-tone |
83\148 | 889.286 | 18 | 11 | |
60\107 | 888.889 | 13 | 8 | Golden Terra Rubra 1/13-tone |
888.643 | φ | 1 | GOLDEN Terra Rubra (L/s = φ) | |
37\66 | 888.000 | 8 | 5 | Golden Terra Rubra 1/8-tone |
88\157 | 887.395 | 19 | 12 | |
51\91 | 886.957 | 11 | 7 | |
65\116 | 886.364 | 14 | 9 | |
79\141 | 885.981 | 17 | 11 | |
93\166 | 885.714 | 20 | 13 | |
14\25 | 884.211 | 3 | 2 | Golden Terra Rubra 1/3-tone |
117\209 | 883.019 | 25 | 17 | |
103\184 | 882.857 | 22 | 15 | |
89\159 | 882.645 | 19 | 13 | |
75\134 | 882.353 | 16 | 11 | |
61\109 | 881.928 | 13 | 9 | |
47\84 | 881.250 | 10 | 7 | |
33\59 | 880.000 | 7 | 5 | |
85\152 | 879.310 | 18 | 13 | |
52\93 | 878.873 | 11 | 8 | |
71\127 | 878.351 | 15 | 11 | |
90\161 | 878.049 | 19 | 14 | |
109\195 | 877.852 | 23 | 17 | |
19\34 | 876.923 | 4 | 3 | |
62\111 | 875.294 | 13 | 10 | |
43\77 | 874.576 | 9 | 7 | |
67\120 | 873.913 | 14 | 11 | |
24\43 | 872.727 | 5 | 4 | |
53\95 | 871.233 | 11 | 9 | |
29\52 | 870.000 | 6 | 5 | |
5\9 | 857.142 | 1 | 0 |
See also
7L 2s (5/2-equivalent) - idealized meantone tuning
7L 2s (81/32-equivalent) - Pythagorean tuning
7L 2s (28/11-equivalent) - Neogothic tuning
7L 2s (18/7-equivalent) - idealized Archytas tuning