9ed5/2

From Xenharmonic Wiki
Jump to navigation Jump to search
← 8ed5/2 9ed5/2 10ed5/2 →
Prime factorization 32
Step size 176.257¢ 
Octave 7\9ed5/2 (1233.8¢)
(semiconvergent)
Twelfth 11\9ed5/2 (1938.83¢)
Consistency limit 6
Distinct consistency limit 2

9 equal divisions of 5/2 (abbreviated 9ed5/2) is a nonoctave tuning system that divides the interval of 5/2 into 9 equal parts of about 176⁠ ⁠¢ each. Each step represents a frequency ratio of (5/2)1/9, or the 9th root of 5/2.

Intervals

Step Interval (¢) JI approximated Simplified ratios
1 176.26 21/19
2 352.51 32/26 16/13
3 528.77 19/14
4 705.03 21/14 3/2
5 881.29 35/21, 43/26, 48/29 5/3
6 1057.54 26/14, 35/19, 48/26 13/7, 24/13
7 1233.80 39/19, 43/21
8 1410.06 43/19
9 1586.31 5/2

The subgroup interpretation used is 5/2.14.19.21.26.29.32.35.39.43.48. Other interpretations are possible. Don't forget that fractions can multiply.

Harmonics

Approximation of harmonics in 9ed5/2
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +33.8 +36.9 +67.6 +33.8 +70.7 -19.9 -74.9 +73.7 +67.6 +78.9 -71.8
Relative (%) +19.2 +20.9 +38.4 +19.2 +40.1 -11.3 -42.5 +41.8 +38.4 +44.7 -40.7
Steps
(reduced)
7
(7)
11
(2)
14
(5)
16
(7)
18
(0)
19
(1)
20
(2)
22
(4)
23
(5)
24
(6)
24
(6)
Approximation of harmonics in 9ed5/2
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -34.1 +13.9 +70.7 -41.1 +30.2 -68.7 +13.9 -74.9 +16.9 -63.6 +35.7
Relative (%) -19.3 +7.9 +40.1 -23.3 +17.2 -39.0 +7.9 -42.5 +9.6 -36.1 +20.3
Steps
(reduced)
25
(7)
26
(8)
27
(0)
27
(0)
28
(1)
28
(1)
29
(2)
29
(2)
30
(3)
30
(3)
31
(4)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.