Wikispaces>Andrew_Heathwaite |
|
(26 intermediate revisions by 14 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{ED intro}} It corresponds to 10.2571 [[edo]]. |
| : This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2009-07-08 15:32:51 UTC</tt>.<br>
| |
| : The original revision id was <tt>80630037</tt>.<br>
| |
| : The revision comment was: <tt>added intervals in cents</tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Equal division of the perfect fifth (3/2) into 6 equal parts=
| |
| (a.k.a. "6th root of 3/2")
| |
|
| |
|
| ==Compositions== | | == Theory == |
| [[http://www.seraph.it/XenoTunes3.html|Metashakti]] by Carlo Serafini | | 6edf is related to the [[miracle]] temperament, which [[tempering out|tempers out]] [[225/224]] and [[1029/1024]] in the 7-limit. |
|
| |
|
| ==Intervals== | | === Harmonics === |
| || degrees || cents ~ cents octave-reduced ||
| | {{Harmonics in equal|6|3|2}} |
| || 0 || 0 (perfect unison, 1:1) ||
| |
| || 1 || 117 ||
| |
| || 2 || 234 ||
| |
| || 3 || 351 ||
| |
| || 4 || 468 ||
| |
| || 5 || 585 ||
| |
| || 6 || 702 (just perfect fifth, 3:2) ||
| |
| || 7 || 819 ||
| |
| || 8 || 936 ||
| |
| || 9 || 1053 ||
| |
| || 10 || 1170 ||
| |
| || 11 || 1287 ~ 87 ||
| |
| || 12 || 1404 ~ 204 (just major whole tone/ninth, 9:4) ||
| |
| || 13 || 1521 ~ 321 ||
| |
| || 14 || 1638 ~ 438 ||
| |
| || 16 || 1872 ~ 672 ||
| |
| || 17 || 1988 ~ 788 ||
| |
| || 18 || 2106 ~ 906 (Pythagorean major sixth, 27:16) ||
| |
| || 19 || 2223 ~ 1023 ||
| |
| || 20 || 2340 ~ 1140 ||
| |
| || 21 || 2457 ~ 57 ||
| |
| || 22 || 2574 ~ 174 ||
| |
| || 23 || 2691 ~ 291 ||
| |
| || 24 || 2808 ~ 408 (Pythagorean major third, 81:64) ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>6edf</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Equal division of the perfect fifth (3/2) into 6 equal parts"></a><!-- ws:end:WikiTextHeadingRule:0 -->Equal division of the perfect fifth (3/2) into 6 equal parts</h1>
| |
| (a.k.a. &quot;6th root of 3/2&quot;)<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="Equal division of the perfect fifth (3/2) into 6 equal parts-Compositions"></a><!-- ws:end:WikiTextHeadingRule:2 -->Compositions</h2>
| |
| <a class="wiki_link_ext" href="http://www.seraph.it/XenoTunes3.html" rel="nofollow">Metashakti</a> by Carlo Serafini<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="Equal division of the perfect fifth (3/2) into 6 equal parts-Intervals"></a><!-- ws:end:WikiTextHeadingRule:4 -->Intervals</h2>
| |
|
| |
|
| |
|
| <table class="wiki_table">
| | == Intervals == |
| <tr>
| |
| <td>degrees<br />
| |
| </td>
| |
| <td>cents ~ cents octave-reduced<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>0<br />
| |
| </td>
| |
| <td>0 (perfect unison, 1:1)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>117<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>234<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>351<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>468<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>585<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>702 (just perfect fifth, 3:2)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>819<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>936<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>1053<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>1170<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>1287 ~ 87<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>1404 ~ 204 (just major whole tone/ninth, 9:4)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>1521 ~ 321<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>1638 ~ 438<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>1872 ~ 672<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>1988 ~ 788<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>2106 ~ 906 (Pythagorean major sixth, 27:16)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>2223 ~ 1023<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>2340 ~ 1140<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>2457 ~ 57<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>2574 ~ 174<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>2691 ~ 291<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>2808 ~ 408 (Pythagorean major third, 81:64)<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | {| class="wikitable center-1 right-2 center-4" |
| | |- |
| | ! # |
| | ! Cents |
| | ! Approximate Ratios |
| | ! [[1L 3s (fifth-equivalent)|Neptunian]]<br>Notation |
| | |- |
| | | 0 |
| | | 0 |
| | | [[1/1]] |
| | | C |
| | |- |
| | | 1 |
| | | 117 |
| | | [[16/15]], [[15/14]] |
| | | C# |
| | |- |
| | | 2 |
| | | 234 |
| | | [[8/7]] |
| | | Db |
| | |- |
| | | 3 |
| | | 351 |
| | | [[11/9]], [[27/22]] |
| | | D |
| | |- |
| | | 4 |
| | | 468 |
| | | [[21/16]] |
| | | E |
| | |- |
| | | 5 |
| | | 585 |
| | | [[7/5]], [[45/32]] |
| | | F |
| | |- |
| | | 6 |
| | | 702 |
| | | [[3/2]] |
| | | C |
| | |- |
| | | 7 |
| | | 819 |
| | | [[8/5]], [[21/13]] |
| | | C# |
| | |- |
| | | 8 |
| | | 936 |
| | | [[12/7]], [[55/32]] |
| | | Db |
| | |- |
| | | 9 |
| | | 1053 |
| | | [[11/6]] |
| | | D |
| | |- |
| | | 10 |
| | | 1170 |
| | | [[49/25]], [[160/81]], [[2/1]] |
| | | E |
| | |- |
| | | 11 |
| | | 1287 |
| | | |
| | | F |
| | |- |
| | | 12 |
| | | 1404 |
| | | 9/4 |
| | | C |
| | |- |
| | | 13 |
| | | 1521 |
| | | |
| | | C# |
| | |- |
| | | 14 |
| | | 1638 |
| | | |
| | | Db |
| | |- |
| | | 15 |
| | | 1755 |
| | | |
| | | D |
| | |- |
| | | 16 |
| | | 1872 |
| | | |
| | | E |
| | |- |
| | | 17 |
| | | 1988 |
| | | |
| | | F |
| | |- |
| | | 18 |
| | | 2106 |
| | | 27/8 |
| | | C |
| | |- |
| | | 19 |
| | | 2223 |
| | | |
| | | C# |
| | |- |
| | | 20 |
| | | 2340 |
| | | |
| | | Db |
| | |- |
| | | 21 |
| | | 2457 |
| | | |
| | | D |
| | |- |
| | | 22 |
| | | 2574 |
| | | |
| | | E |
| | |- |
| | | 23 |
| | | 2691 |
| | | |
| | | F |
| | |- |
| | | 24 |
| | | 2808 |
| | | 81/16 |
| | | C |
| | |} |
| | |
| | == Music == |
| | ; [[Carlo Serafini]] |
| | * [http://www.seraph.it/dep/det/metashakti.mp3 ''Metashakti''] |
| | |
| | ; [[XэнкøрX]] |
| | * [https://youtu.be/OSQljL4ANf8 "The Blame Game"] from ''State of the World (XLP)'' (2023) |
| | |
| | [[Category:Listen]] |
| | |
| | {{todo|expand}} |
Prime factorization
|
2 × 3
|
Step size
|
116.993 ¢
|
Octave
|
10\6edf (1169.93 ¢) (→ 5\3edf)
|
Twelfth
|
16\6edf (1871.88 ¢) (→ 8\3edf)
|
Consistency limit
|
3
|
Distinct consistency limit
|
3
|
Special properties
|
|
6 equal divisions of the perfect fifth (abbreviated 6edf or 6ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 6 equal parts of about 117 ¢ each. Each step represents a frequency ratio of (3/2)1/6, or the 6th root of 3/2. It corresponds to 10.2571 edo.
Theory
6edf is related to the miracle temperament, which tempers out 225/224 and 1029/1024 in the 7-limit.
Harmonics
Approximation of harmonics in 6edf
Harmonic
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
Error
|
Absolute (¢)
|
-30.1
|
-30.1
|
+56.8
|
+21.5
|
+56.8
|
+24.0
|
+26.8
|
+56.8
|
-8.6
|
-56.6
|
+26.8
|
Relative (%)
|
-25.7
|
-25.7
|
+48.6
|
+18.4
|
+48.6
|
+20.5
|
+22.9
|
+48.6
|
-7.3
|
-48.4
|
+22.9
|
Steps (reduced)
|
10 (4)
|
16 (4)
|
21 (3)
|
24 (0)
|
27 (3)
|
29 (5)
|
31 (1)
|
33 (3)
|
34 (4)
|
35 (5)
|
37 (1)
|
Intervals
Music
- Carlo Serafini
- XэнкøрX