6edf: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
CompactStar (talk | contribs)
No edit summary
BudjarnLambeth (talk | contribs)
m {{todo|expand}}
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
'''6EDF''' is the [[EDF|equal division of the just perfect fifth]] into six parts of 116.9925 [[cent|cents]] each, corresponding to 10.2571 [[edo]]. It is related to the [[Gamelismic clan|miracle temperament]], which tempers out 225/224 and 1029/1024 in the 7-limit.
{{ED intro}} It corresponds to 10.2571 [[edo]].  
 
== Theory ==
6edf is related to the [[miracle]] temperament, which [[tempering out|tempers out]] [[225/224]] and [[1029/1024]] in the 7-limit.
 
=== Harmonics ===
{{Harmonics in equal|6|3|2}}


== Intervals ==
== Intervals ==


{| class="wikitable"
{| class="wikitable center-1 right-2 center-4"
|-
|-
! degrees
! #
! cents ~ cents octave-reduced
! Cents
! approximate ratios
! Approximate Ratios
! [[1L 3s (fifth-equivalent)|Neptunian]] notation
! [[1L 3s (fifth-equivalent)|Neptunian]]<br>Notation
|-
|-
| 0
| 0
| 0 (perfect unison, 1:1)
| 0
| [[1/1]]
| [[1/1]]
| C
| C
Line 42: Line 48:
|-
|-
| 6
| 6
| 702 (just perfect fifth, 3:2)
| 702
| [[3/2]]
| [[3/2]]
| C
| C
Line 67: Line 73:
|-
|-
| 11
| 11
| 1287 ~ 87
| 1287
|  
|  
| F
| F
|-
|-
| 12
| 12
| 1404 ~ 204 (just major whole tone/ninth, 9:4)
| 1404
|
| 9/4
| C  
| C  
|-
|-
| 13
| 13
| 1521 ~ 321
| 1521
|
|
| C#
| C#
|-
|-
| 14
| 14
| 1638 ~ 438
| 1638
|
|
| Db
| Db
|-
|-
| 15
| 15
| 1755 ~ 555
| 1755
|
|
| D
| D
|-
|-
| 16
| 16
| 1872 ~ 672
| 1872
|
|
| E
| E
|-
|-
| 17
| 17
| 1988 ~ 788
| 1988
|
|
| F
| F
|-
|-
| 18
| 18
| 2106 ~ 906 (Pythagorean major sixth, 27:8)
| 2106
|
| 27/8
| C
| C
|-
|-
| 19
| 19
| 2223 ~ 1023
| 2223
|
|
| C#
| C#
|-
|-
| 20
| 20
| 2340 ~ 1140
| 2340
|
|
| Db
| Db
|-
|-
| 21
| 21
| 2457 ~ 57
| 2457
|
|
| D
| D
|-
|-
| 22
| 22
| 2574 ~ 174
| 2574
|
|
| E
| E
|-
|-
| 23
| 23
| 2691 ~ 291
| 2691
|
|
| F
| F
|-
|-
| 24
| 24
| 2808 ~ 408 (Pythagorean major third, 81:16)
| 2808
|
| 81/16
| C
| C
|}
|}


== Compositions ==
== Music ==
* [http://www.seraph.it/dep/det/metashakti.mp3 Metashakti] by [[Carlo Serafini]]
; [[Carlo Serafini]]
* [http://www.seraph.it/dep/det/metashakti.mp3 ''Metashakti'']
 
; [[XэнкøрX]]
* [https://youtu.be/OSQljL4ANf8 "The Blame Game"] from ''State of the World (XLP)'' (2023)


[[Category:Edf]]
[[Category:Nonoctave]]
[[Category:Listen]]
[[Category:Listen]]
{{todo|expand}}

Latest revision as of 08:55, 19 December 2024

← 5edf 6edf 7edf →
Prime factorization 2 × 3
Step size 116.993 ¢ 
Octave 10\6edf (1169.93 ¢) (→ 5\3edf)
Twelfth 16\6edf (1871.88 ¢) (→ 8\3edf)
Consistency limit 3
Distinct consistency limit 3
Special properties

6 equal divisions of the perfect fifth (abbreviated 6edf or 6ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 6 equal parts of about 117 ¢ each. Each step represents a frequency ratio of (3/2)1/6, or the 6th root of 3/2. It corresponds to 10.2571 edo.

Theory

6edf is related to the miracle temperament, which tempers out 225/224 and 1029/1024 in the 7-limit.

Harmonics

Approximation of harmonics in 6edf
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -30.1 -30.1 +56.8 +21.5 +56.8 +24.0 +26.8 +56.8 -8.6 -56.6 +26.8
Relative (%) -25.7 -25.7 +48.6 +18.4 +48.6 +20.5 +22.9 +48.6 -7.3 -48.4 +22.9
Steps
(reduced)
10
(4)
16
(4)
21
(3)
24
(0)
27
(3)
29
(5)
31
(1)
33
(3)
34
(4)
35
(5)
37
(1)

Intervals

# Cents Approximate Ratios Neptunian
Notation
0 0 1/1 C
1 117 16/15, 15/14 C#
2 234 8/7 Db
3 351 11/9, 27/22 D
4 468 21/16 E
5 585 7/5, 45/32 F
6 702 3/2 C
7 819 8/5, 21/13 C#
8 936 12/7, 55/32 Db
9 1053 11/6 D
10 1170 49/25, 160/81, 2/1 E
11 1287 F
12 1404 9/4 C
13 1521 C#
14 1638 Db
15 1755 D
16 1872 E
17 1988 F
18 2106 27/8 C
19 2223 C#
20 2340 Db
21 2457 D
22 2574 E
23 2691 F
24 2808 81/16 C

Music

Carlo Serafini
XэнкøрX