1178edo: Difference between revisions
Jump to navigation
Jump to search
ArrowHead294 (talk | contribs) mNo edit summary |
ArrowHead294 (talk | contribs) m Partial undo |
||
Line 12: | Line 12: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{ | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br />8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |- | ||
| 2.3 | | 2.3 | ||
Line 62: | Line 71: | ||
| 0.0318 | | 0.0318 | ||
| 3.12 | | 3.12 | ||
|} | |||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{ | {| class="wikitable center-all left-5" | ||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br />per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br />ratio* | |||
! Temperaments | |||
|- | |- | ||
| 1 | | 1 | ||
Line 96: | Line 112: | ||
| 4/3<br />(225/224) | | 4/3<br />(225/224) | ||
| [[Hemienneadecal]] | | [[Hemienneadecal]] | ||
|} | |||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct | |||
== Music == | == Music == |
Revision as of 12:35, 16 November 2024
← 1177edo | 1178edo | 1179edo → |
Theory
1178edo is a very strong 19-limit system, and is a zeta peak, integral and gap edo. It is also distinctly consistent through to the 21-odd-limit, and is the first edo past 742 with a lower 19-limit relative error. A basis for its 19-limit commas consists of 2500/2499, 3025/3024, 3250/3249, 4200/4199, 4225/4224, 4375/4374, and 4914/4913. It supports and provides a great tuning for semihemienneadecal.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | -0.087 | -0.236 | -0.065 | -0.214 | -0.120 | -0.032 | -0.060 | +0.249 | +0.304 | -0.044 |
Relative (%) | +0.0 | -8.6 | -23.1 | -6.4 | -21.0 | -11.8 | -3.1 | -5.9 | +24.4 | +29.8 | -4.3 | |
Steps (reduced) |
1178 (0) |
1867 (689) |
2735 (379) |
3307 (951) |
4075 (541) |
4359 (825) |
4815 (103) |
5004 (292) |
5329 (617) |
5723 (1011) |
5836 (1124) |
Subsets and supersets
Since 1178 = 2 × 19 × 31, 1178edo is notable for containing both 19 and 31. Its subset edos are 2, 19, 31, 38, 62, and 589.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-1867 1178⟩ | [⟨1178 1867]] | +0.0276 | 0.0276 | 2.71 |
2.3.5 | [-14 -19-19⟩, [-99 61 1⟩ | [⟨1178 1867 2735]] | +0.0522 | 0.0415 | 4.07 |
2.3.5.7 | 4375/4374, 703125/702464, [-52 -5 -2 23⟩ | [⟨1178 1867 2735 3307]] | +0.0450 | 0.0380 | 3.73 |
2.3.5.7.11 | 3025/3024, 4375/4374, 234375/234256, [-27 3 -4 10 1⟩ | [⟨1178 1867 2735 3307 4075]] | +0.0484 | 0.0347 | 3.41 |
2.3.5.7.11.13 | 3025/3024, 4225/4224, 4375/4374, 78125/78078, 1664000/1663893 | [⟨1178 1867 2735 3307 4075 4359]] | +0.0457 | 0.0322 | 3.16 |
2.3.5.7.11.13.17 | 2500/2499, 3025/3024, 4225/4224, 4375/4374, 4914/4913, 14875/14872 | [⟨1178 1867 2735 3307 4075 4359 4815]] | 0.0403 | 0.0327 | 3.21 |
2.3.5.7.11.13.17.19 | 2500/2499, 3025/3024, 3250/3249, 4200/4199, 4225/4224, 4375/4374, 4914/4913 | [⟨1178 1867 2735 3307 4075 4359 4815 5004]] | 0.0370 | 0.0318 | 3.12 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 337\1178 | 343.29 | 8000/6561 | Raider |
19 | 489\1178 (7\1178) |
498.13 (7.13) |
4/3 (225/224) |
Enneadecal |
31 | 581\1178 (11\1178) |
591.851 (11.205) |
936/665 (?) |
217 & 1178 |
38 | 260\1178 (12\1178) |
264.86 (12.22) |
500/429 (144/143) |
Semihemienneadecal |
38 | 489\1178 (7\1178) |
498.13 (7.13) |
4/3 (225/224) |
Hemienneadecal |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct
Music
- Listening (2023) – 217 & 1178 and enneadecal in 1178edo tuning