199edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Mark as stub
BudjarnLambeth (talk | contribs)
m Intro inter harm
Line 1: Line 1:
{{Stub}}
{{Infobox ET}}
{{Infobox ET}}
{{ED intro}}


== Intervals ==
{{Interval table}}


{{Stub}}
== Harmonics ==
{{Harmonics in equal
| steps = 199
| num = 3
| denom = 1
}}
{{Harmonics in equal
| steps = 199
| num = 3
| denom = 1
| start = 12
| collapsed = 1
}}

Revision as of 09:34, 5 October 2024

This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 198edt 199edt 200edt →
Prime factorization 199 (prime)
Step size 9.55756 ¢ 
Octave 126\199edt (1204.25 ¢)
Consistency limit 3
Distinct consistency limit 3

199 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 199edt or 199ed3), is a nonoctave tuning system that divides the interval of 3/1 into 199 equal parts of about 9.56 ¢ each. Each step represents a frequency ratio of 31/199, or the 199th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 9.56 6.53
2 19.12 13.07
3 28.67 19.6
4 38.23 26.13 45/44, 46/45
5 47.79 32.66
6 57.35 39.2
7 66.9 45.73 26/25
8 76.46 52.26 23/22
9 86.02 58.79 41/39
10 95.58 65.33 37/35
11 105.13 71.86
12 114.69 78.39 31/29
13 124.25 84.92 29/27
14 133.81 91.46
15 143.36 97.99 38/35
16 152.92 104.52 47/43
17 162.48 111.06
18 172.04 117.59
19 181.59 124.12
20 191.15 130.65
21 200.71 137.19
22 210.27 143.72 35/31
23 219.82 150.25 42/37
24 229.38 156.78
25 238.94 163.32 31/27
26 248.5 169.85 15/13
27 258.05 176.38 65/56
28 267.61 182.91
29 277.17 189.45 27/23
30 286.73 195.98 46/39
31 296.28 202.51 51/43
32 305.84 209.05 37/31
33 315.4 215.58 6/5
34 324.96 222.11 35/29, 41/34
35 334.51 228.64 57/47
36 344.07 235.18
37 353.63 241.71 27/22
38 363.19 248.24
39 372.74 254.77
40 382.3 261.31
41 391.86 267.84 69/55
42 401.42 274.37 29/23
43 410.98 280.9
44 420.53 287.44
45 430.09 293.97
46 439.65 300.5 58/45
47 449.21 307.04 35/27
48 458.76 313.57 43/33
49 468.32 320.1 38/29
50 477.88 326.63 29/22, 54/41
51 487.44 333.17 57/43
52 496.99 339.7
53 506.55 346.23 63/47
54 516.11 352.76 31/23
55 525.67 359.3 42/31
56 535.22 365.83
57 544.78 372.36 37/27
58 554.34 378.89 62/45
59 563.9 385.43 18/13
60 573.45 391.96 39/28
61 583.01 398.49
62 592.57 405.03 38/27
63 602.13 411.56
64 611.68 418.09 47/33
65 621.24 424.62
66 630.8 431.16 36/25
67 640.36 437.69 42/29, 55/38
68 649.91 444.22
69 659.47 450.75 41/28
70 669.03 457.29
71 678.59 463.82
72 688.14 470.35 58/39
73 697.7 476.88
74 707.26 483.42
75 716.82 489.95 62/41
76 726.37 496.48 35/23
77 735.93 503.02
78 745.49 509.55
79 755.05 516.08
80 764.61 522.61 14/9
81 774.16 529.15
82 783.72 535.68
83 793.28 542.21
84 802.84 548.74 35/22, 62/39
85 812.39 555.28
86 821.95 561.81 45/28
87 831.51 568.34
88 841.07 574.87
89 850.62 581.41
90 860.18 587.94 23/14
91 869.74 594.47 38/23
92 879.3 601.01
93 888.85 607.54
94 898.41 614.07
95 907.97 620.6
96 917.53 627.14
97 927.08 633.67
98 936.64 640.2
99 946.2 646.73 19/11
100 955.76 653.27 33/19
101 965.31 659.8
102 974.87 666.33
103 984.43 672.86
104 993.99 679.4
105 1003.54 685.93
106 1013.1 692.46
107 1022.66 698.99 65/36
108 1032.22 705.53 69/38
109 1041.77 712.06 42/23
110 1051.33 718.59
111 1060.89 725.13
112 1070.45 731.66
113 1080 738.19 28/15
114 1089.56 744.72
115 1099.12 751.26 66/35
116 1108.68 757.79 55/29
117 1118.23 764.32
118 1127.79 770.85
119 1137.35 777.39 27/14
120 1146.91 783.92
121 1156.47 790.45
122 1166.02 796.98
123 1175.58 803.52 69/35
124 1185.14 810.05
125 1194.7 816.58
126 1204.25 823.12
127 1213.81 829.65
128 1223.37 836.18
129 1232.93 842.71
130 1242.48 849.25
131 1252.04 855.78
132 1261.6 862.31 29/14
133 1271.16 868.84 25/12
134 1280.71 875.38
135 1290.27 881.91
136 1299.83 888.44
137 1309.39 894.97
138 1318.94 901.51
139 1328.5 908.04 28/13
140 1338.06 914.57 13/6
141 1347.62 921.11
142 1357.17 927.64
143 1366.73 934.17
144 1376.29 940.7 31/14
145 1385.85 947.24 69/31
146 1395.4 953.77 47/21, 56/25
147 1404.96 960.3
148 1414.52 966.83 43/19
149 1424.08 973.37 41/18, 66/29
150 1433.63 979.9
151 1443.19 986.43
152 1452.75 992.96
153 1462.31 999.5
154 1471.86 1006.03
155 1481.42 1012.56
156 1490.98 1019.1
157 1500.54 1025.63 69/29
158 1510.09 1032.16 55/23
159 1519.65 1038.69
160 1529.21 1045.23
161 1538.77 1051.76
162 1548.33 1058.29 22/9
163 1557.88 1064.82
164 1567.44 1071.36 47/19
165 1577 1077.89
166 1586.56 1084.42 5/2
167 1596.11 1090.95
168 1605.67 1097.49 43/17
169 1615.23 1104.02
170 1624.79 1110.55 23/9
171 1634.34 1117.09
172 1643.9 1123.62
173 1653.46 1130.15 13/5
174 1663.02 1136.68
175 1672.57 1143.22
176 1682.13 1149.75 37/14
177 1691.69 1156.28
178 1701.25 1162.81
179 1710.8 1169.35
180 1720.36 1175.88
181 1729.92 1182.41
182 1739.48 1188.94
183 1749.03 1195.48
184 1758.59 1202.01
185 1768.15 1208.54
186 1777.71 1215.08
187 1787.26 1221.61
188 1796.82 1228.14
189 1806.38 1234.67
190 1815.94 1241.21
191 1825.49 1247.74 66/23
192 1835.05 1254.27
193 1844.61 1260.8
194 1854.17 1267.34
195 1863.72 1273.87 44/15
196 1873.28 1280.4
197 1882.84 1286.93
198 1892.4 1293.47
199 1901.96 1300 3/1

Harmonics

Approximation of harmonics in 199edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +4.25 +0.00 -1.05 +4.49 +4.25 -4.56 +3.20 +0.00 -0.81 -3.34 -1.05
Relative (%) +44.5 +0.0 -11.0 +47.0 +44.5 -47.8 +33.5 +0.0 -8.5 -34.9 -11.0
Steps
(reduced)
126
(126)
199
(0)
251
(52)
292
(93)
325
(126)
352
(153)
377
(178)
398
(0)
417
(19)
434
(36)
450
(52)
Approximation of harmonics in 199edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +3.74 -0.31 +4.49 -2.10 -1.93 +4.25 -3.33 +3.44 -4.56 +0.92 +0.42
Relative (%) +39.1 -3.3 +47.0 -22.0 -20.1 +44.5 -34.9 +36.0 -47.8 +9.6 +4.4
Steps
(reduced)
465
(67)
478
(80)
491
(93)
502
(104)
513
(115)
524
(126)
533
(135)
543
(145)
551
(153)
560
(162)
568
(170)