22edf: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
No edit summary
-irrelevant shit
Line 234: Line 234:
|
|
|}
|}
==Scale tree==
If 4\7 (four degrees of 7EDO) is at one extreme and 3\5 (three degrees of 5EDO) is at the other, all other possible 5L 2s scales exist in a continuum between them. You can chop this continuum up by taking [[Mediant|"freshman sums"]] of the two edges - adding together the numerators, then adding together the denominators (i.e. adding them together as if you would be adding the complex numbers analogous real and imaginary parts). Thus, between 4\7 and 3\5 you have (4+3)\(7+5) = 7\12, seven degrees of 12EDO.
If we carry this freshman-summing out a little further, new, larger [[EDO]]s pop up in our continuum.
Generator range: 31.16883 cents (4\7/22 = 2\77) to 32.{{Overline|72}} cents (3\5/22 = 3\110)
{| class="wikitable center-all"
! colspan="7" |Fifth
!Cents
!Comments
|-
|4\7||  || || || || || ||31.1688||
|-
| || || || || || || 27\47||31.3346||
|-
| || || || || || 23\40|| ||31.{{Overline|36}}||
|-
| || || ||  || || || 42\73|| 31.3823||
|-
| || || || ||19\33|| || ||31.4045 ||
|-
| || ||  || || || ||53\92 ||31.4229||
|-
| || || || ||  ||34\59 || ||31.4330||
|-
|  || || || || ||  ||49\85||31.44385||
|-
| || || ||15\26|| ||  || ||31.4685 ||
|-
|  || || || || ||  ||56\97|| 31.4902||
|-
| || || || ||  ||41\71|| ||31.4981||
|-
| || || || || || ||67\116||31.5047||
|-
| || || || ||26\45|| || ||31.{{Overline|51}}||[[Flattone]] is in this region
|-
| || || || || || ||63\109||31.5263||
|-
| || || || || ||37\64|| ||31.534{{Overline|09}}||
|-
| || || || || || ||48\83||31.5444||
|-
| || ||11\19|| || || || ||31.57895||
|-
| || || || || || ||51\88||31.6116||
|-
| || || || || ||40\69|| ||31.62055||
|-
| || || || || || ||69\119||31.6272||
|-
| || || || ||29\50|| || ||31.{{Overline|63}}||
|-
| || || || || || ||76\131||31.6447||[[Golden meantone]] (696.2145¢)
|-
| || || || || ||47\81|| ||31.6498||
|-
|  || || || || || ||65\112||31.6558||
|-
| || || ||18\31|| || || ||31.67155||[[Meantone]] is in this region
|-
| || || || || || ||61\105||31.6883||
|-
| || || || || ||43\74|| ||31.6953||
|-
| || || || || || ||68\117||31.7016||
|-
| || || || ||25\43|| || ||31.7125||
|-
| || || || || || ||57\98||31.7254||
|-
| || || || || ||32\55|| ||31.7355||
|-
| || || || || || ||39\67||31.7503||
|-
| ||7\12|| || || || || ||31.{{Overline|81}}||
|-
| || || || || || ||38\65||31.8881||
|-
| || || || || ||31\53|| ||31.90395||The fifth closest to a just [[3/2]] for EDOs less than 200
|-
| || || || || || ||55\94||31.9149||[[Garibaldi]] / [[Cassandra]]
|-
| || || || ||24\41|| || ||31.92905||
|-
| || || || || || ||65\111||31.9410||
|-
| || || || || ||41\70|| ||31.94805||
|-
| || || || || || ||58\99||31.9559||
|-
| || || ||17\29|| || || ||31.9749||
|-
| || || || || || ||61\104||31.9930||
|-
| || || || || ||44\75|| ||32.0000||
|-
| || || || || || ||71\121||32.0060||Golden neogothic (704.0956¢)
|-
| || || || ||27\46|| || ||32.0158||[[Neogothic]] is in this region
|-
| || || || || || ||64\109||32.0267||
|-
| || || || || ||37\63|| ||32.0346||
|-
| || || || || || ||47\80||32.0{{Overline|54}}||
|-
| || ||10\17|| || || || ||32.0856||
|-
| || || || || || ||43\73||32.1295||
|-
| || || || || ||33\56|| ||32.1429||
|-
| || || || || || ||56\95||32.1531||
|-
| || || || ||23\39|| || ||32.1768||
|-
| || || || || || ||59\100||32.{{Overline|18}}||
|-
| || || || || ||36\61|| ||32.1908||
|-
| || || || || || ||49\83||32.2015||
|-
| || || ||13\22|| || || ||32.2314||[[Archy]] is in this region
|-
| || || || || || ||42\71||32.2663||
|-
| || || || || ||29\49|| ||32.2820||
|-
| || || || || || ||45\76||32.29665||
|-
| || || || ||16\27|| || ||32.{{Overline|32}}||
|-
| || || || || || ||35\59||32.3575||
|-
| || || || || ||19\32|| ||32.38{{Overline|63}}||
|-
| || || || || || ||22\37||32.{{Overline|432}}||
|-
|3\5|| || || || || || ||32.{{Overline|72}}||
|}Tunings above 7\12 on this chart are called "negative tunings" (as they lessen the size of the fifth) and include meantone systems such as 1/3-comma (close to 11\19) and 1/4-comma (close to 18\31). As these tunings approach 4\7, the majors become flatter and the minors become sharper.
Tunings below 7\12 on this chart are called "positive tunings" and they include Pythagorean tuning itself (well approximated by 31\53) as well as superpyth tunings such as 10\17 and 13\22. As these tunings approach 3\5, the majors become sharper and the minors become flatter. Around 13\22 through 16\27, the thirds fall closer to 7-limit than 5-limit intervals: 7:6 and 9:7 as opposed to 6:5 and 5:4.
[[Category:Edf]]
[[Category:Edonoi]]

Revision as of 13:24, 7 May 2024

← 21edf 22edf 23edf →
Prime factorization 2 × 11
Step size 31.907 ¢ 
Octave 38\22edf (1212.47 ¢) (→ 19\11edf)
Twelfth 60\22edf (1914.42 ¢) (→ 30\11edf)
Consistency limit 3
Distinct consistency limit 3

22EDF is the equal division of the just perfect fifth into 22 parts of 31.907 cents each, corresponding to 37.6092 edo (similar to every fifth step of 188edo).

Intervals

degree cents value corresponding
JI intervals
comments
0 exact 1/1
1 31.907 55/54
2 63.8141 (28/27), (27/26)
3 95.7211
4 127.6282 14/13
5 159.5352 57/52
6 191.4423
7 223.3493 8/7
8 255.2564
9 287.1634 13/11
10 319.0705 6/5
11 350.9775 60/49, 49/40
12 382.8845 5/4
13 414.7916 14/11
14 446.6986
15 478.6057
16 510.5127
17 542.4198 26/19
18 574.3268 39/28
19 606.2339 64/45
20 638.1409 (13/9)
21 670.048 81/55
22 701.955 exact 3/2 just perfect fifth
23 733.862 55/36
24 765.7691 14/9, 81/52
25 797.6761
26 828.5732 21/13
27 861.4902 171/104
28 893.3973
29 925.3043 12/7
30 956.2114
31 988.1184 39/22
32 1020.0255 9/5
33 1052.9235 90/49, 147/80
34 1084.8395 15/8
35 1116.7466 21/11
36 1148.6536
37 1180.5607
38 1211.4677
39 1244.3748 39/19
40 1276.2816 117/56
41 1308.1889 32/15
42 1340.0959 13/6
43 1372.003 243/110
44 1403.91 exact 9/4