User:Dummy index/Random lists of temperaments by generator size
Jump to navigation
Jump to search
12ET-complementary comma pairs (e.g. syntonic-schismatic relation)
M3 or d4 | A: 4*P5=M3+2*P8 | B: 8*P5+d4=5*P8 | Remarks |
---|---|---|---|
32/27 | 2187/2048=[-11 7⟩ | 256/243=[8 -5⟩ | A/B=[-19 12⟩, A: (7edo), B: (5edo) |
6/5 | 135/128=[-7 3 1⟩ | (64/63)^2*(245/243)=[12 -9 1⟩ | A/B=[-19 12⟩, A: Mavila, B: Superpyth |
11/9 | 729/704=[-6 6 0 0 -1⟩ | (64/63)^2/(99/98)=[13 -6 0 0 -1⟩ | A/B=[-19 12⟩, A: Flattone, B: Supra |
8192/6561 | 531441/524288=[-19 12⟩ | 1/1 | A: (12edo) |
5/4 | 81/80=[-4 4 -1⟩ | 32805/32768=[-15 8 1⟩ | A*B=[-19 12⟩, A: Meantone, B: Schismatic |
81/64 | 1/1 | 531441/524288=[-19 12⟩ | B: (12edo) |
9/7 | 64/63=[6 -2 0 -1⟩ | 59049/57344=[-13 10 0 -1⟩ | B/A=[-19 12⟩, A: Archytas clan, B: Septimal meantone |
4/3 | 256/243=[8 -5⟩ | 2187/2048=[-11 7⟩ | B/A=[-19 12⟩, A: (5edo), B: (7edo) |
Q: Mavila must have the fifth flatter than 7edo's, why be placed between 7edo and 5edo?
A: I wrote the 32/27 in this table as a monzo-ish nominal ratio. 32/27 constructed of P5 & P8 will much sharper when flatter P5 situation.
(3/2)^(1/2) | 2187/2048=[-11 7⟩ | 17-comma=[27 -17⟩ | A/B=[-38 24⟩, A: (7edo), B: (17edo) |
---|---|---|---|
(3/2)^(4/7) | 531441/524288=[-19 12⟩ | 531441/524288=[-19 12⟩ | A*B=[-38 24⟩, A: (12edo), B: (12edo) |
(3/2)^(2/3) | 256/243=[8 -5⟩ | [-41 26⟩ | B/A=[-49 31⟩, A: (5edo), B: (26edo) |
Temperaments spectrum
Respect to 5L 2s/Temperaments and Epic Table 1.
For diatonic range
and some Neutral thirds.
Ratios | Remarks | Mapping development | ||||
---|---|---|---|---|---|---|
Fifthspan | -8 | -6 | 4 | 6 | ||
Pelogic | 25/18 | 14/9 | 6/5 8/7 |
9/7 | [⟨1 0 ...], ⟨0 1 -3 -4 -1]] | |
Armodue | 10/7 | 11/7 | 6/5 7/6 |
14/11 | [⟨1 0 ...], ⟨0 1 -3 5 -1]] +9 | |
Septimal mavila | 7/5 | 25/16 | 6/5 | 32/25 | [⟨1 0 ...], ⟨0 1 -3 -11 -1]] -16 | |
Hornbostel | 25/18 48/35 |
25/16 | 6/5 | 32/25 | [⟨1 0 ...], ⟨0 1 -3 12]] +23 | |
Plutus | 32/25 48/35 |
16/11 | 5/4 7/6 |
11/8 | 105/64 is at 10 fifthspan -> 7edo | [⟨1 0 ...], ⟨0 1 4 5 6]] +7-7 |
Flattone | 21/16 | 16/11 | 5/4 11/9 |
11/8 | [⟨1 0 ...], ⟨0 1 4 -9 6]] -14 | |
Meanenneadecal | 9/7 | 16/11 | 5/4 11/9 |
11/8 | [⟨1 0 ...], ⟨0 1 4 10 6]] +19 | |
Septimal meantone | 9/7 | 10/7 | 5/4 | 7/5 | Good 4:5:7 in 10 fifthspanp-p | [⟨1 0 ...], ⟨0 1 4 10]] |
Mohajira | 14/11 | 5/4 | 7/5 is at -9.5 fifthspan | [⟨1 0 ...], ⟨0 2 8 -11]] *2-31 | ||
Undecimal meantone | 14/11 | 10/7 | 5/4 | 7/5 | Good 4:5:7 in 10 fifthspanp-p | [⟨1 0 ...], ⟨0 1 4 10 18]] +12 |
Dominant | 32/25 | 7/5 | 5/4 9/7 |
10/7 | inaccurate Good 4:6 & 5:7 in 6 fifthspanp-p |
[⟨1 0 ...], ⟨0 1 4 -2]] -12 |
Schism | 5/4 | 10/7 | 81/64 9/7 |
7/5 | inaccurate | [⟨1 0 ...], ⟨0 1 -8 -2]] -12 |
Grackle | 5/4 | 81/64 | 7/5 is at -18 fifthspan | [⟨1 0 ...], ⟨0 1 -8 -26]] -24 | ||
Garibaldi | 5/4 | 7/5 | 81/64 80/63 |
10/7 | Good 4:5:6:7 in 15 fifthspanp-p | [⟨1 0 ...], ⟨0 1 -8 -14]] +12 |
Andromeda | 5/4 | 7/5 | 14/11 | 10/7 | 11/9 is at -20 fifthspan -> 41edo | [⟨1 0 ...], ⟨0 1 -8 -14 -18 -21]] |
Hemififths | 7/5 | 14/11 | 10/7 | 5/4 is at 12.5 fifthspan | [⟨1 0 ...], ⟨0 2 25 13 5]] *2+41 | |
Edson | 7/5 | 14/11 | 10/7 | -> 29edo | [⟨1 0 ...], ⟨0 1 no-five -14-(-8) -18-(-8) -21-(-8)]] | |
Gentle region Leapfrog |
27/22 | 14/11 | [⟨1 0 ...], ⟨0 1 no-five 15 11 8]] +29 | |||
Supra | 11/9 | 11/8 | 9/7 14/11 |
16/11 | [⟨1 0 ...], ⟨0 1 no-five -2 -6]] -17 | |
Superpyth | 6/5 | 15/11 | 9/7 | 22/15 | [⟨1 0 ...], ⟨0 1 9 -2 16]] +22 | |
Ultrapyth | 33/28 | 112/81 | 9/7 | 81/56 | [⟨1 0 ...], ⟨0 1 14 -2 -11]] +5-25 |
For 600 cents to 800 cents
Generator | Ratios | Remarks | Mapping | ||
---|---|---|---|---|---|
Fifth(?)span | 1 | 2 | |||
Pluto | 7/5 | 10/7 | 81/80 | [⟨1 0 ...], ⟨0 -7 -26 -25]] | |
Tritonic | 7/5 | 10/7,64/45 | 64/63 | [⟨1 0 ...], ⟨0 -5 11 12]] | |
Liese | 10/7 | 10/7,81/56 | 21/20,28/27 | [⟨1 0 ...], ⟨0 3 12 11]] | |
Maquila | 15/11 | 22/15,35/24 | 77/72 | [⟨1 0 ...], ⟨0 17 -6 22 10]] | |
Pelogic | 3/2 | 3/2,10/7,64/45 | 9/8,16/15,15/14,28/25,64/63 | [⟨1 0 ...], ⟨0 1 -3 -4]] | |
Septimal mavila | 3/2 | 3/2,16/11,22/15,64/45 | 12/11,11/10,9/8,16/15 | [⟨1 0 ...], ⟨0 1 -3 -11 -1]] | |
Larry | 40/27 | 40/27 | 11/10 | [⟨1 0 ...], ⟨0 -6 -17 no-seven -15]] | |
Flattone | 3/2 | 3/2,40/27 | 9/8,10/9 | [⟨1 0 ...], ⟨0 1 4 -9]] | |
Septimal meantone | 3/2 | 3/2,40/27 | 9/8,10/9,28/25 | [⟨1 0 ...], ⟨0 1 4 10]] | |
Garibaldi | 3/2 | 3/2 | 9/8,28/25 | [⟨1 0 ...], ⟨0 1 -8 -14]] | |
Leapday | 3/2 | 3/2 | 9/8 | [⟨1 0 ...], ⟨0 1 21 15]] | |
Superpyth | 3/2 | 3/2,32/21 | 8/7,9/8 | [⟨1 0 ...], ⟨0 1 9 -2]] | |
Hemiseven | 320/243 | 243/160 | 8/7,55/48 | [⟨1 0 ...], ⟨0 -6 -29 2 21]] | |
Father | 3/2 | 3/2,8/5,14/9,45/32,81/56 | 6/5,7/6,9/8,32/25,56/45 | [⟨1 0 ...], ⟨0 1 -1 3]] | |
Sidi | 9/7 | 14/9,45/28 | 5/4,6/5 | [⟨1 0 ...], ⟨0 -4 -2 -9]] | |
Magic | 5/4 | 8/5,45/28 | 9/7,32/25 | [⟨1 0 ...], ⟨0 5 1 12]] |
Pan-5L2s tuning spectrum
Eigenmonzo (unchanged interval) |
at (fifthspan) |
Generator (cents) |
in this temperament (e.g.) |
---|---|---|---|
5/4 | -3(m3) | 671.229 | Mavila |
6/5 | +4(M3) | 678.910 | Mavila |
11/9 | +4(M3) | 686.852 | Flattone |
11/8 | +6(A4) | 691.886 | Flattone |
6/5 | -3(m3) | 694.786 | Meantone (1/3 comma) |
9/7 | -8(d4) | 695.614 | Septimal meantone |
7/6 | +9(A2) | 696.319 | Septimal meantone |
5/4 | +4(M3) | 696.578 | Meantone (1/4 comma) |
7/5 | +6(A4) | 697.085 | Septimal meantone |
11/8 | +18(AA3) | 697.295 | Undecimal meantone |
14/11 | -8(d4) | 697.812 | Undecimal meantone |
7/5 | -18(dd6) | 700.972 | Grackle |
5/4 | -8(d4) | 701.711 | Schismatic |
6/5 | +9(A2) | 701.738 | Schismatic |
3/2 | +1(P5) | 701.955 | Pythagorean |
11/8 | -18(dd6) | 702.705 | Andromeda |
7/5 | -6(d5) | 702.915 | Garibaldi |
13/11 | -3(m3) | 703.597 | Leapfrog |
14/11 | +4(M3) | 704.377 | Leapfrog |
27/22 | -8(d4) | 705.682 | Leapfrog |
11/9 | -8(d4) | 706.574 | Supra |
11/8 | -6(d5) | 708.114 | Supra |
9/7 | +4(M3) | 708.771 | Archy (1/4 comma) |
5/4 | +9(A2) | 709.590 | Superpyth |
6/5 | -8(d4) | 710.545 | Superpyth |
7/6 | -3(m3) | 711.043 | Archy (1/3 comma) |
Clarify Meantone#Tuning spectrum
19/17 | at +2(M2) | 696.279 | for regular temperament with nominal 19/17 at M2, see some 19-limit variation in Meantone family (search ⟨0 1 * * * * -5 -3] in mappings.) |
18/17 | at +7(A1) | 699.850 | for regular temperament with nominal 18/17 at A1, see some 17-limit variation in Meantone family (search ⟨0 1 * * * * -5] in mappings.) |
18/17 | at -5(m2) | 700.209 | for regular temperament with nominal 18/17 at m2, see No-sevens subgroup temperaments#Photia for example. |
17/16 | at -5(m2) | 699.009 | for regular temperament with nominal 17/16 at m2, see some 17-limit variation in Meantone family (search ⟨0 1 * * * * -5] in mappings.) |
19/16 | at -3(m3) | 700.829 | for regular temperament with nominal 19/16 at m3, see some 19-limit variation in Meantone family (search ⟨0 1 * * * * * -3] in mappings.) |
45/34 | at +11(A3) | 698.661 | for regular temperament with nominal 45/34 at A3, see some 17-limit variation in Meantone family (search ⟨0 1 4 * * * -5] in mappings.) |
17/15 | at -10(d3) | 698.331 | for regular temperament with nominal 17/15 at d3, see some 17-limit variation in Meantone family (search ⟨0 1 4 * * * -5] in mappings.) |
51/38 | at -1(P4) | 690.673 | for regular temperament with nominal 51/38 at P4, see some 19-limit variation in Meantone family (search ⟨0 1 * * * * -5 -3] in mappings.) |
81/80 | at 0(P1) | --- | 81/80 is tempered out, return to 1/1, anyway. |
81/80 | at +12(A7) | 701.792 | this interpretation is by the schismatic temperament. |
81/80 | at +19(AA7) | 695.869 | this interpretation is by the Lalayo. |
256/243 | at -5(m2) | 701.955 | any 3-limit eigenmonzo results in the pythagorean tuning. |
1024/729 | at -6(d5) | ||
2187/2048 | at +7(A1) | ||
8192/6561 | at -8(d4) | ||
[27 -17⟩ | at -17(dd3) | ||
256/243 | at +7(A1) | 698.604 | flatten 2187/2048 of +7(A1) by [-19 12⟩. (-1 pythagorean comma / +7 step) |
1024/729 | at +6(A4) | 698.045 | flatten 729/512 of +6(A4) by [-19 12⟩. (-1 pythagorean comma / +6 step) |
2187/2048 | at -5(m2) | 697.263 | sharpen 256/243 of -5(m2) by [-19 12⟩. (+1 pythagorean comma / -5 step) |
8192/6561 | at +4(M3) | 696.090 | flatten 81/64 of +4(M3) by [-19 12⟩. (-1 pythagorean comma / +4 step) |
[27 -17⟩ | at +7(A1) | 695.252 | flatten 2187/2048 of +7(A1) by two [-19 12⟩. (-2 pythagorean comma / +7 step) |