There are many conceivable ways to map 80edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.
Diatonic
Due to the size of the edo, this mapping does not cover all the notes. In addition, the best approximation to 5/4 is a pentuply-augmented sixth or hextuply-diminished unison, which is impossible to play with the root note of the scale.
8
22
13
27
41
55
69
4
18
32
46
60
74
8
22
9
23
37
51
65
79
13
27
41
55
69
0
14
28
42
56
70
4
18
32
46
60
74
8
22
5
19
33
47
61
75
9
23
37
51
65
79
13
27
41
55
69
76
10
24
38
52
66
0
14
28
42
56
70
4
18
32
46
60
74
8
22
1
15
29
43
57
71
5
19
33
47
61
75
9
23
37
51
65
79
13
27
41
55
69
72
6
20
34
48
62
76
10
24
38
52
66
0
14
28
42
56
70
4
18
32
46
60
74
8
22
11
25
39
53
67
1
15
29
43
57
71
5
19
33
47
61
75
9
23
37
51
65
79
13
27
41
55
69
44
58
72
6
20
34
48
62
76
10
24
38
52
66
0
14
28
42
56
70
4
18
32
46
60
74
11
25
39
53
67
1
15
29
43
57
71
5
19
33
47
61
75
9
23
37
51
65
79
44
58
72
6
20
34
48
62
76
10
24
38
52
66
0
14
28
42
56
70
11
25
39
53
67
1
15
29
43
57
71
5
19
33
47
61
75
44
58
72
6
20
34
48
62
76
10
24
38
52
66
11
25
39
53
67
1
15
29
43
57
71
44
58
72
6
20
34
48
62
11
25
39
53
67
44
58
Diaschismic
On the other hand, the diaschismic mapping can cover the whole gamut and make harmonics easy to play together, although it needs to be expanded from 2L 8s to 10L 2s to hit every single note.
29
36
41
48
55
62
69
46
53
60
67
74
1
8
15
58
65
72
79
6
13
20
27
34
41
48
63
70
77
4
11
18
25
32
39
46
53
60
67
74
75
2
9
16
23
30
37
44
51
58
65
72
79
6
13
20
27
0
7
14
21
28
35
42
49
56
63
70
77
4
11
18
25
32
39
46
53
12
19
26
33
40
47
54
61
68
75
2
9
16
23
30
37
44
51
58
65
72
79
6
17
24
31
38
45
52
59
66
73
0
7
14
21
28
35
42
49
56
63
70
77
4
11
18
25
32
36
43
50
57
64
71
78
5
12
19
26
33
40
47
54
61
68
75
2
9
16
23
30
37
44
51
58
65
62
69
76
3
10
17
24
31
38
45
52
59
66
73
0
7
14
21
28
35
42
49
56
63
70
77
15
22
29
36
43
50
57
64
71
78
5
12
19
26
33
40
47
54
61
68
75
2
9
41
48
55
62
69
76
3
10
17
24
31
38
45
52
59
66
73
0
7
14
74
1
8
15
22
29
36
43
50
57
64
71
78
5
12
19
26
20
27
34
41
48
55
62
69
76
3
10
17
24
31
53
60
67
74
1
8
15
22
29
36
43
79
6
13
20
27
34
41
48
32
39
46
53
60
58
65
71
78
76
3
10
17
24
74
1
8
15
22
29
36
43
79
6
13
20
27
34
41
48
55
62
69
77
4
11
18
25
32
39
46
53
60
67
74
1
8
2
9
16
23
30
37
44
51
58
65
72
79
6
13
20
27
34
0
7
14
21
28
35
42
49
56
63
70
77
4
11
18
25
32
39
46
53
5
12
19
26
33
40
47
54
61
68
75
2
9
16
23
30
37
44
51
58
65
72
79
3
10
17
24
31
38
45
52
59
66
73
0
7
14
21
28
35
42
49
56
63
70
77
4
11
18
15
22
29
36
43
50
57
64
71
78
5
12
19
26
33
40
47
54
61
68
75
2
9
16
23
30
37
44
34
41
48
55
62
69
76
3
10
17
24
31
38
45
52
59
66
73
0
7
14
21
28
35
42
49
60
67
74
1
8
15
22
29
36
43
50
57
64
71
78
5
12
19
26
33
40
47
54
79
6
13
20
27
34
41
48
55
62
69
76
3
10
17
24
31
38
45
52
25
32
39
46
53
60
67
74
1
8
15
22
29
36
43
50
57
44
51
58
65
72
79
6
13
20
27
34
41
48
55
70
77
4
11
18
25
32
39
46
53
60
9
16
23
30
37
44
51
58
35
42
49
56
63
54
61
Bidia
Slicing the period into quarters produces the Bidia mapping, which keeps octaves closer to horizontal and makes the well-tuned 19th harmonic easily accessible. The (rightward) generator 7\80 is the Bidia generator which functions as ~16/15, ~17/16, and ~18/17; two of these make a somewhat sharp ~9/8; if allowed to pass the quarter-octave, three of these make a near-just classic minor third ~6/5; and four of them make a slightly sharp undecimal major third ~14/11. Bryan Deister has demonstrated this mapping (except shifted to put the first note 0 where the first note 6 is shown here, to avoid a missed first note 3) in microtonal improvisation in 80edo (2025). The range is about 2¾ octaves, and the octaves slope down very gently.
69
76
75
2
9
16
23
74
1
8
15
22
29
36
43
0
7
14
21
28
35
42
49
56
63
70
79
6
13
20
27
34
41
48
55
62
69
76
3
10
5
12
19
26
33
40
47
54
61
68
75
2
9
16
23
30
37
4
11
18
25
32
39
46
53
60
67
74
1
8
15
22
29
36
43
50
57
10
17
24
31
38
45
52
59
66
73
0
7
14
21
28
35
42
49
56
63
70
77
4
9
16
23
30
37
44
51
58
65
72
79
6
13
20
27
34
41
48
55
62
69
76
3
10
17
24
22
29
36
43
50
57
64
71
78
5
12
19
26
33
40
47
54
61
68
75
2
9
16
23
30
37
44
51
42
49
56
63
70
77
4
11
18
25
32
39
46
53
60
67
74
1
8
15
22
29
36
43
50
57
69
76
3
10
17
24
31
38
45
52
59
66
73
0
7
14
21
28
35
42
49
56
63
9
16
23
30
37
44
51
58
65
72
79
6
13
20
27
34
41
48
55
62
36
43
50
57
64
71
78
5
12
19
26
33
40
47
54
61
68
56
63
70
77
4
11
18
25
32
39
46
53
60
67
3
10
17
24
31
38
45
52
59
66
73
23
30
37
44
51
58
65
72
50
57
64
71
78
70
77