Lucy tuning

From Xenharmonic Wiki
Jump to navigation Jump to search
This page presents a novelty topic.

It may contain ideas which are less likely to find practical applications in music, or numbers or structures that are arbitrary or exceedingly small, large, or complex.

Novelty topics are often developed by a single person or a small group. As such, this page may also contain idiosyncratic terms, notation, or conceptual frameworks.

[math]\displaystyle{ \def\val#1{\left\langle\begin{matrix}#1\end{matrix}\right]} }[/math] Lucy tuning is the meantone tuning advocated by Charles Lucy, with a fifth of precisely 600 + 300/π = 695.493 cents. This is close to the 88edo fifth of 695.455 cents, and shares its general characteristics such as being a good tuning for mothra and euterpe temperaments, providing a mothra generator, an approximate 8/7, of 200+100/π cents, which extends 5-limit meantone Lucy tuning to a version with a mothra (1/3 meantone fifth) generator. As a tuning for 5-limit meantone, it has the softer quality characteristic of the flatter fifth meantones between 50edo and 19edo. It has a major third of 1200/π cents, or 1/π of an octave, 381.972 cents, 4.342 cents flat of 5/4, but 2.827 cents sharp of 1/3-comma meantone's major third.

A reasonable mapping for 11-limit extended Lucy tuning would be

[math]\displaystyle{ \val{1200 & 1800 + \frac{300}{π} & 2400 + \frac{1200}{π} & 3400 - \frac{100}{π} & 4400 - \frac{800}{π}} }[/math]

This tempers out the mothra commas of 81/80, 1029/1024, 99/98 and 385/384. While Charles Lucy himself does not seem to consider the possibility of extending Lucy tuning, it should be noted that the mothra mapping above gives a 7/4 of 1000-100/π, a mere 0.659 cents flat of a just 7/4. Another way to extend Lucy tuning is meanpop:

[math]\displaystyle{ \val{1200 & 1800 + \frac{300}{π} & 2400 + \frac{1200}{π} & 2400 + \frac{3000}{π} & 5400 - \frac{3900}{π}} }[/math]

Since this does not involve splitting the generator into thirds, it is closer to Lucy's 5-limit perspective.

External links