List of edo-distinct 34et rank two temperaments

From Xenharmonic Wiki
Jump to: navigation, search

The temperaments listed are 34edo-distinct, meaning that they are all different even if tuned in 34edo. The ordering is by increasing complexity of 5. The temperament of lowest TE complexity supported by the patent val was chosen as the representative for each class of edo-distinctness.

5-limit temperaments

Period generator Wedgie Name Complexity Commas
34 11 <<8 1 -17]] Würschmidt 3.958 393216/390625
17 6 <<18 -2 -45]] 9.648 35184372088832/34332275390625
34 15 <<10 -3 -28]] Mabila 5.755 268435456/263671875
17 3 <<2 -4 -11]] Srutal 2.121 2048/2025
34 9 <<6 5 -6]] Hanson 2.685 15625/15552
17 2 <<14 6 -23]] Vishnu 6.423 6115295232/6103515625
34 13 <<12 -7 -39]] 7.718 549755813888/533935546875
17 7 <<30 8 -57]] 14.26 945539748965690376192/931322574615478515625
34 5 <<4 9 5]] Tetracot 2.783 20000/19683
17 8 <<22 24 -13]] 10.198 2384185791015625/2313662762852352
34 1 <<14 23 4]] 7.688 97656250000/94143178827
17 1 <<6 22 21]] 6.749 32768000000/31381059609
34 7 <<2 13 16]] Immunity 4.157 1638400/1594323
17 4 <<10 14 -1]] Fifive 5.041 9765625/9565938
34 3 <<16 19 -7]] 7.583 152587890625/148769467776
17 5 <<26 16 -35]] Quatracot 11.648 1490116119384765625/1479074071160291328
2 1 <<0 17 27]] 5.984 134217728/129140163

7-limit temperaments

Period generator Wedgie Name Complexity Commas
34 11 <<8 1 21 -17 11 46]] 5.146 875/864 6272/6075
17 6 <<16 2 8 -34 -32 13]] 6.478 49/48 393216/390625
34 15 <<10 -3 5 -28 -20 20]] 4.693 49/48 28672/28125
17 3 <<2 -4 -16 -11 -31 -26]] Diaschismic 4.290 126/125 2048/2025
34 9 <<6 5 3 -6 -12 -7]] Keemun 2.280 49/48 126/125
17 2 <<14 6 24 -23 -1 39]] 6.227 875/864 19208/18225
34 13 <<12 27 23 15 3 -22]] 6.930 1029/1000 6860/6561
17 7 <<4 -8 2 -22 -8 27]] 3.533 49/48 2048/2025
34 5 <<4 9 19 5 19 19]] 3.995 126/125 2240/2187
17 8 <<22 24 28 -13 -17 -2]] 8.428 126/125 4117715/3779136
34 1 <<14 23 7 4 -28 -48]] 6.799 49/48 546875/531441
17 1 <<6 22 20 21 15 -15]] 5.832 1029/1000 2240/2187
34 7 <<2 13 1 16 -4 -34]] 3.651 49/48 2240/2187
17 4 <<10 14 22 -1 7 12]] 4.891 126/125 6860/6561
34 3 <<16 19 25 -7 -5 5]] 6.502 126/125 84035/78732
17 5 <<8 18 4 10 -16 -41]] 4.958 49/48 20000/19683
2 1 <<0 17 17 27 27 -8]] 5.514 1029/1000 5120/5103