List of edo-distinct 34et rank two temperaments
Jump to navigation
Jump to search
The temperaments listed are 34edo-distinct, meaning that they are all different even if tuned in 34edo. The ordering is by increasing complexity of 5. The temperament of lowest TE complexity supported by the patent val was chosen as the representative for each class of edo-distinctness.
5-limit temperaments
Period generator | Wedgie | Name | Complexity | Commas |
34 11 | <<8 1 -17]] | Würschmidt | 3.958 | 393216/390625 |
17 6 | <<18 -2 -45]] | 9.648 | 35184372088832/34332275390625 | |
34 15 | <<10 -3 -28]] | Mabila | 5.755 | 268435456/263671875 |
17 3 | <<2 -4 -11]] | Srutal | 2.121 | 2048/2025 |
34 9 | <<6 5 -6]] | Hanson | 2.685 | 15625/15552 |
17 2 | <<14 6 -23]] | Vishnu | 6.423 | 6115295232/6103515625 |
34 13 | <<12 -7 -39]] | 7.718 | 549755813888/533935546875 | |
17 7 | <<30 8 -57]] | 14.26 | 945539748965690376192/931322574615478515625 | |
34 5 | <<4 9 5]] | Tetracot | 2.783 | 20000/19683 |
17 8 | <<22 24 -13]] | 10.198 | 2384185791015625/2313662762852352 | |
34 1 | <<14 23 4]] | 7.688 | 97656250000/94143178827 | |
17 1 | <<6 22 21]] | 6.749 | 32768000000/31381059609 | |
34 7 | <<2 13 16]] | Immunity | 4.157 | 1638400/1594323 |
17 4 | <<10 14 -1]] | Fifive | 5.041 | 9765625/9565938 |
34 3 | <<16 19 -7]] | 7.583 | 152587890625/148769467776 | |
17 5 | <<26 16 -35]] | Quatracot | 11.648 | 1490116119384765625/1479074071160291328 |
2 1 | <<0 17 27]] | 5.984 | 134217728/129140163 |
7-limit temperaments
Period generator | Wedgie | Name | Complexity | Commas |
34 11 | <<8 1 21 -17 11 46]] | 5.146 | 875/864 6272/6075 | |
17 6 | <<16 2 8 -34 -32 13]] | 6.478 | 49/48 393216/390625 | |
34 15 | <<10 -3 5 -28 -20 20]] | 4.693 | 49/48 28672/28125 | |
17 3 | <<2 -4 -16 -11 -31 -26]] | Diaschismic | 4.290 | 126/125 2048/2025 |
34 9 | <<6 5 3 -6 -12 -7]] | Keemun | 2.280 | 49/48 126/125 |
17 2 | <<14 6 24 -23 -1 39]] | 6.227 | 875/864 19208/18225 | |
34 13 | <<12 27 23 15 3 -22]] | 6.930 | 1029/1000 6860/6561 | |
17 7 | <<4 -8 2 -22 -8 27]] | 3.533 | 49/48 2048/2025 | |
34 5 | <<4 9 19 5 19 19]] | 3.995 | 126/125 2240/2187 | |
17 8 | <<22 24 28 -13 -17 -2]] | 8.428 | 126/125 4117715/3779136 | |
34 1 | <<14 23 7 4 -28 -48]] | 6.799 | 49/48 546875/531441 | |
17 1 | <<6 22 20 21 15 -15]] | 5.832 | 1029/1000 2240/2187 | |
34 7 | <<2 13 1 16 -4 -34]] | 3.651 | 49/48 2240/2187 | |
17 4 | <<10 14 22 -1 7 12]] | 4.891 | 126/125 6860/6561 | |
34 3 | <<16 19 25 -7 -5 5]] | 6.502 | 126/125 84035/78732 | |
17 5 | <<8 18 4 10 -16 -41]] | 4.958 | 49/48 20000/19683 | |
2 1 | <<0 17 17 27 27 -8]] | 5.514 | 1029/1000 5120/5103 |