List of edo-distinct 17et rank two temperaments

From Xenharmonic Wiki
Jump to navigation Jump to search

The temperaments listed are 17edo-distinct, meaning that they are all different even if tuned in 17edo. The ordering is by increasing complexity of 3. The temperament of lowest TE complexity supported by the patent val was chosen as the representative for each class of edo-distinctness.

7-limit temperaments

Period,
generator
Wedgie Name Complexity Comma list
17 7 ⟨⟨ 1 -8 -2 -15 -6 18 ]] Schism 2.544 64/63 360/343
17 5 ⟨⟨ 2 1 -4 -3 -12 -12 ]] Dichotic 1.588 25/24 64/63
17 8 ⟨⟨ 3 10 11 9 9 -3 ]] 2.822 200/189 375/343
17 6 ⟨⟨ 4 2 9 -6 3 15 ]] Sidi 2.074 25/24 245/243
17 2 ⟨⟨ 5 11 7 6 -3 -15 ]] 2.799 200/189 245/243
17 4 ⟨⟨ 6 3 5 -9 -9 3 ]] 2.216 25/24 360/343
17 1 ⟨⟨ 7 12 3 3 -15 -27 ]] 3.572 200/189 1728/1715
17 3 ⟨⟨ 8 4 1 -12 -21 -9 ]] 3.250 25/24 2560/2401

11-limit temperaments

Period,
generator
Wedgie Name Complexity Comma list
17 7 ⟨⟨ 1 -8 -2 -6 -15 -6 -13 18 14 -10 ]] 2.271 45/44 64/63 99/98
17 5 ⟨⟨ 2 1 -4 5 -3 -12 1 -12 8 28 ]] Dichotic 1.630 25/24 45/44 64/63
17 8 ⟨⟨ 3 -7 -6 -1 -18 -18 -12 6 22 18 ]] 2.724 45/44 64/63 375/343
17 6 ⟨⟨ 4 2 9 10 -6 3 2 15 16 -3 ]] Sidi 1.958 25/24 45/44 99/98
17 2 ⟨⟨ 5 11 7 4 6 -3 -11 -15 -29 -13 ]] 2.592 55/54 80/77 99/98
17 4 ⟨⟨ 6 3 5 -2 -9 -9 -24 3 -15 -23 ]] 2.409 25/24 80/77 99/98
17 1 ⟨⟨ 7 12 3 9 3 -15 -10 -27 -21 15 ]] 3.096 55/54 80/77 245/242
17 3 ⟨⟨ 8 4 1 3 -12 -21 -23 -9 -7 5 ]] 2.877 25/24 80/77 245/242

13-limit temperaments

Period,
generator
Wedgie Name Complexity Comma list
17 7 ⟨⟨ 1 -8 -2 -6 -9 -15 -6 -13 -18 18 14 9 -10 -18 -9 ]] 2.183 40/39 45/44 78/77 99/98
17 5 ⟨⟨ 2 1 -4 5 -1 -3 -12 1 -9 -12 8 -6 28 12 -22 ]] 1.500 25/24 40/39 45/44 65/63 8
17 8 ⟨⟨ 3 10 11 16 7 9 9 15 0 -3 2 -21 7 -21 -35 ]] 2.560 40/39 45/44 65/63 99/98
17 6 ⟨⟨ 4 2 9 10 15 -6 3 2 9 15 16 27 -3 9 15 ]] 2.147 25/24 45/44 65/63 99/98
17 2 ⟨⟨ 5 11 7 4 6 6 -3 -11 -9 -15 -29 -27 -13 -9 6 ]] 2.353 40/39 55/54 65/63 99/98
17 4 ⟨⟨ 6 3 5 15 14 -9 -9 3 0 3 24 21 25 21 -7 ]] 2.433 25/24 45/44 65/63 352/343
17 1 ⟨⟨ 7 12 3 9 5 3 -15 -10 -18 -27 -21 -33 15 3 -16 ]] 2.869 40/39 55/54 65/63 245/242
17 3 ⟨⟨ 8 4 1 3 13 -12 -21 -23 -9 -9 -7 15 5 33 34 ]] 2.801 25/24 65/63 80/77 364/363