Catalog of seven-limit rank two temperaments

From Xenharmonic Wiki
Jump to navigation Jump to search

Below is a complete listing of all 179 7-limit rank-two temperaments with TE complexity less than 20 and TE logflat badness less than 0.06, obtained by the wedgie method. The TE error is multiplied by 1200 so that it can be thought of as cents, and the badness is multiplied by 1000. Some "junk" temperaments of very low complexity are listed below the main list, which is ordered by increasing complexity.

Temperament list

Name Complexity Error (¢) Badness (k) Wedgie Mapping Commas
ternary 0.770 58.026 28.673 ⟨⟨ 0 0 3 0 5 7 ]] [3 5 7 0], 0 0 0 1]] 10/9 16/15
dicot 0.818 35.781 19.935 ⟨⟨ 2 1 3 -3 -1 4 ]] [1 1 2 2], 0 2 1 3]] 15/14 25/24
mother 0.835 41.553 24.152 ⟨⟨ 1 -1 -2 -4 -6 -2 ]] [1 0 4 6], 0 1 -1 -2]] 16/15 21/20
brutus 0.859 86.798 53.389 ⟨⟨ 1 2 4 1 4 4 ]] [1 0 -1 -4], 0 1 2 4]] 10/9 28/25
geryon 0.863 82.117 51.009 ⟨⟨ 2 1 0 -3 -6 -3 ]] [1 1 2 3], 0 2 1 0]] 8/7 25/21
antaeus 0.887 57.236 37.537 ⟨⟨ 0 2 -2 3 -3 -10 ]] [2 3 0 10], 0 0 1 -1]] 9/8 35/32
beep 0.917 26.605 18.638 ⟨⟨ 2 3 1 0 -4 -6 ]] [1 0 0 2], 0 2 3 1]] 21/20 27/25
father 0.954 28.092 21.312 ⟨⟨ 1 -1 3 -4 2 10 ]] [1 0 4 -2], 0 1 -1 3]] 16/15 28/27
flat 0.969 32.444 25.381 ⟨⟨ 2 1 -1 -3 -7 -5 ]] [1 1 2 3], 0 2 1 -1]] 21/20 25/24
quad 0.979 57.541 45.991 ⟨⟨ 0 0 4 0 6 9 ]] [4 6 9 0], 0 0 0 1]] 9/8 25/24
phlegyas 0.991 62.667 51.293 ⟨⟨ 1 2 -2 1 -6 -10 ]] [1 0 -1 6], 0 1 2 -2]] 10/9 35/32
malacoda 0.997 44.954 37.207 ⟨⟨ 2 -1 1 -6 -4 5 ]] [1 0 3 2], 0 2 -1 1]] 15/14 35/32
sharptone 1.022 28.544 24.848 ⟨⟨ 1 4 3 4 2 -4 ]] [1 0 -4 -2], 0 1 4 3]] 21/20 28/27
ugolino 1.068 46.010 43.758 ⟨⟨ 2 3 5 0 2 3 ]] [1 0 0 -1], 0 2 3 5]] 15/14 27/25
charon 1.082 57.767 56.404 ⟨⟨ 2 4 4 2 1 -2 ]] [2 0 -2 -1], 0 1 2 2]] 10/9 49/45
nessus 1.133 55.258 59.070 ⟨⟨ 2 4 1 2 -4 -9 ]] [1 0 -1 2], 0 2 4 1]] 10/9 49/48
penta 1.163 41.597 46.882 ⟨⟨ 3 2 4 -4 -2 4 ]] [1 1 2 2], 0 3 2 4]] 28/25 36/35
medusa 1.182 36.664 42.712 ⟨⟨ 1 -3 -2 -7 -6 4 ]] [1 0 7 6], 0 1 -3 -2]] 15/14 64/63
plutus 1.224 36.293 45.275 ⟨⟨ 1 4 5 4 5 0 ]] [1 0 -4 -5], 0 1 4 5]] 15/14 81/80
sodium 1.241 43.494 55.814 ⟨⟨ 2 5 3 3 -1 -7 ]] [1 1 1 2], 0 2 5 3]] 21/20 54/49
mite 1.257 41.576 54.770 ⟨⟨ 2 3 6 0 4 6 ]] [1 0 0 -2], 0 2 3 6]] 27/25 28/25
baba 1.258 33.587 44.321 ⟨⟨ 2 -2 1 -8 -4 8 ]] [1 0 4 2], 0 2 -2 1]] 16/15 49/45
quint 1.278 35.517 48.312 ⟨⟨ 0 0 5 0 8 12 ]] [5 8 12 0], 0 0 0 1]] 16/15 27/25
sharp 1.333 19.537 28.942 ⟨⟨ 2 1 6 -3 4 11 ]] [1 1 2 1], 0 2 1 6]] 25/24 28/27
walid 1.395 30.187 48.978 ⟨⟨ 2 -2 -2 -8 -9 1 ]] [2 0 8 9], 0 1 -1 -1]] 16/15 50/49
pelogic 1.404 23.529 38.661 ⟨⟨ 1 -3 -4 -7 -9 -1 ]] [1 0 7 9], 0 1 -3 -4]] 21/20 135/128
oxygen 1.412 36.009 59.866 ⟨⟨ 3 5 2 1 -5 -9 ]] [1 2 3 3], 0 -3 -5 -2]] 21/20 175/162
wallaby 1.433 34.157 58.468 ⟨⟨ 1 -3 3 -7 2 15 ]] [1 0 7 -2], 0 1 -3 3]] 28/27 35/32
dominant 1.466 11.550 20.690 ⟨⟨ 1 4 -2 4 -6 -16 ]] [1 0 -4 6], 0 1 4 -2]] 36/35 64/63
pater 1.469 29.457 53.001 ⟨⟨ 1 -1 -5 -4 -11 -9 ]] [1 0 4 11], 0 1 -1 -5]] 16/15 126/125
diminished 1.494 12.047 22.401 ⟨⟨ 4 4 4 -3 -5 -2 ]] [4 0 3 5], 0 1 1 1]] 36/35 50/49
decimal 1.502 15.075 28.334 ⟨⟨ 4 2 2 -6 -8 -1 ]] [2 0 3 4], 0 2 1 1]] 25/24 49/48
blacksmith 1.526 13.210 25.640 ⟨⟨ 0 5 0 8 0 -14 ]] [5 8 0 14], 0 0 1 0]] 28/27 49/48
hystrix 1.543 22.654 44.944 ⟨⟨ 3 5 1 1 -7 -12 ]] [1 2 3 3], 0 -3 -5 -1]] 36/35 160/147
dichotic 1.588 17.871 37.565 ⟨⟨ 2 1 -4 -3 -12 -12 ]] [1 1 2 4], 0 2 1 -4]] 25/24 64/63
octokaidecal 1.618 16.849 36.747 ⟨⟨ 2 6 6 5 4 -3 ]] [2 0 -5 -4], 0 1 3 3]] 28/27 50/49
fluorine 1.618 25.482 55.623 ⟨⟨ 1 6 5 7 5 -5 ]] [1 0 -7 -5], 0 1 6 5]] 21/20 243/224
august 1.655 11.594 26.459 ⟨⟨ 3 0 6 -7 1 14 ]] [3 0 7 -1], 0 1 0 2]] 36/35 128/125
deflated 1.734 23.590 59.079 ⟨⟨ 3 0 -3 -7 -13 -7 ]] [3 0 7 13], 0 1 0 -1]] 21/20 128/125
jamesbond 1.749 16.364 41.714 ⟨⟨ 0 0 7 0 11 16 ]] [7 11 16 0], 0 0 0 1]] 25/24 81/80
armodue 1.804 18.075 49.038 ⟨⟨ 1 -3 5 -7 5 20 ]] [1 0 7 -5], 0 1 -3 5]] 36/35 135/128
opossum 1.895 13.586 40.650 ⟨⟨ 3 5 9 1 6 7 ]] [1 2 3 4], 0 -3 -5 -9]] 28/27 126/125
pajara 1.953 6.301 20.033 ⟨⟨ 2 -4 -4 -11 -12 2 ]] [2 0 11 12], 0 1 -2 -2]] 50/49 64/63
progression 1.976 14.868 48.356 ⟨⟨ 5 3 7 -7 -3 8 ]] [1 1 2 2], 0 5 3 7]] 36/35 392/375
sidi 2.074 15.794 56.586 ⟨⟨ 4 2 9 -6 3 15 ]] [1 3 3 6], 0 -4 -2 -9]] 25/24 245/243
godzilla 2.181 6.748 26.747 ⟨⟨ 2 8 1 8 -4 -20 ]] [1 0 -4 2], 0 2 8 1]] 49/48 81/80
meantone 2.205 3.384 13.707 ⟨⟨ 1 4 10 4 13 12 ]] [1 0 -4 -13], 0 1 4 10]] 81/80 126/125
injera 2.205 7.686 31.130 ⟨⟨ 2 8 8 8 7 -4 ]] [2 0 -8 -7], 0 1 4 4]] 50/49 81/80
inflated 2.224 13.279 54.729 ⟨⟨ 3 0 9 -7 6 21 ]] [3 0 7 -6], 0 1 0 3]] 28/27 128/125
negri 2.245 6.308 26.483 ⟨⟨ 4 -3 2 -14 -8 13 ]] [1 2 2 3], 0 -4 3 -2]] 49/48 225/224
keemun 2.280 6.326 27.408 ⟨⟨ 6 5 3 -6 -12 -7 ]] [1 0 1 2], 0 6 5 3]] 49/48 126/125
superpelog 2.316 13.029 58.216 ⟨⟨ 2 -6 1 -14 -4 19 ]] [1 0 7 2], 0 2 -6 1]] 49/48 135/128
augene 2.336 5.456 24.816 ⟨⟨ 3 0 -6 -7 -18 -14 ]] [3 0 7 18], 0 1 0 -2]] 64/63 126/125
ripple 2.454 11.901 59.735 ⟨⟨ 5 8 2 1 -11 -18 ]] [1 2 3 3], 0 -5 -8 -2]] 36/35 2560/2401
triforce 2.529 10.318 54.988 ⟨⟨ 6 0 3 -14 -12 7 ]] [3 0 7 6], 0 2 0 1]] 49/48 128/125
schism 2.544 10.503 56.648 ⟨⟨ 1 -8 -2 -15 -6 18 ]] [1 0 15 6], 0 1 -8 -2]] 64/63 360/343
hexe 2.689 9.578 57.730 ⟨⟨ 6 0 0 -14 -17 0 ]] [6 0 14 17], 0 1 0 0]] 50/49 128/125
hedgehog 2.784 6.810 43.983 ⟨⟨ 6 10 10 2 -1 -5 ]] [2 1 1 2], 0 3 5 5]] 50/49 245/243
porcupine 2.819 6.200 41.057 ⟨⟨ 3 5 -6 1 -18 -28 ]] [1 2 3 2], 0 -3 -5 6]] 64/63 250/243
superpyth 2.874 4.695 32.318 ⟨⟨ 1 9 -2 12 -6 -30 ]] [1 0 -12 6], 0 1 9 -2]] 64/63 245/243
doublewide 2.928 6.082 43.462 ⟨⟨ 8 6 6 -9 -13 -3 ]] [2 1 3 4], 0 4 3 3]] 50/49 875/864
magic 2.937 2.631 18.918 ⟨⟨ 5 1 12 -10 5 25 ]] [1 0 2 -1], 0 5 1 12]] 225/224 245/243
nautilus 2.943 7.955 57.420 ⟨⟨ 6 10 3 2 -12 -21 ]] [1 2 3 3], 0 -6 -10 -3]] 49/48 250/243
flattone 2.987 5.186 38.553 ⟨⟨ 1 4 -9 4 -17 -32 ]] [1 0 -4 17], 0 1 4 -9]] 81/80 525/512
catler 3.026 6.590 50.297 ⟨⟨ 0 0 12 0 19 28 ]] [12 19 28 0], 0 0 0 1]] 81/80 128/125
sensi 3.080 3.242 25.622 ⟨⟨ 7 9 13 -2 1 5 ]] [1 6 8 11], 0 -7 -9 -13]] 126/125 245/243
beatles 3.125 5.636 45.872 ⟨⟨ 2 -9 -4 -19 -12 16 ]] [1 1 5 4], 0 2 -9 -4]] 64/63 686/675
liese 3.211 5.435 46.706 ⟨⟨ 3 12 11 12 9 -8 ]] [1 0 -4 -3], 0 3 12 11]] 81/80 686/675
muggles 3.261 6.343 56.206 ⟨⟨ 5 1 -7 -10 -25 -19 ]] [1 0 2 5], 0 5 1 -7]] 126/125 525/512
triton 3.342 6.365 59.245 ⟨⟨ 3 -7 -8 -18 -21 1 ]] [1 0 6 7], 0 3 -7 -8]] 225/224 1029/1000
porky 3.362 5.774 54.389 ⟨⟨ 3 5 16 1 17 23 ]] [1 2 3 5], 0 -3 -5 -16]] 225/224 250/243
mothra 3.573 3.491 37.146 ⟨⟨ 3 12 -1 12 -10 -36 ]] [1 1 0 3], 0 3 12 -1]] 81/80 1029/1024
orwell 3.685 1.832 20.735 ⟨⟨ 7 -3 8 -21 -7 27 ]] [1 0 3 1], 0 7 -3 8]] 225/224 1728/1715
myna 3.731 2.331 27.044 ⟨⟨ 10 9 7 -9 -17 -9 ]] [1 9 9 8], 0 -10 -9 -7]] 126/125 1728/1715
garibaldi 3.823 1.778 21.644 ⟨⟨ 1 -8 -14 -15 -25 -10 ]] [1 0 15 25], 0 1 -8 -14]] 225/224 3125/3087
miracle 3.991 1.261 16.742 ⟨⟨ 6 -7 -2 -25 -20 15 ]] [1 1 3 3], 0 6 -7 -2]] 225/224 1029/1024
squares 4.022 3.412 45.993 ⟨⟨ 4 16 9 16 3 -24 ]] [1 3 8 6], 0 -4 -16 -9]] 81/80 2401/2400
valentine 4.210 2.103 31.056 ⟨⟨ 9 5 -3 -13 -30 -21 ]] [1 1 2 3], 0 9 5 -3]] 126/125 1029/1024
diaschismic 4.290 2.472 37.914 ⟨⟨ 2 -4 -16 -11 -31 -26 ]] [2 0 11 31], 0 1 -2 -8]] 126/125 2048/2025
mohajira 4.368 3.504 55.714 ⟨⟨ 2 8 -11 8 -23 -48 ]] [1 1 0 6], 0 2 8 -11]] 81/80 6144/6125
nusecond 4.454 3.048 50.389 ⟨⟨ 11 13 17 -5 -4 3 ]] [1 3 4 5], 0 -11 -13 -17]] 126/125 2430/2401
octacot 4.551 1.961 33.845 ⟨⟨ 8 18 11 10 -5 -25 ]] [1 1 1 2], 0 8 18 11]] 245/243 2401/2400
würschmidt 4.578 2.908 50.776 ⟨⟨ 8 1 18 -17 6 39 ]] [1 7 3 15], 0 -8 -1 -18]] 225/224 8748/8575
superkleismic 4.620 2.695 47.932 ⟨⟨ 9 10 -3 -5 -30 -35 ]] [1 4 5 2], 0 -9 -10 3]] 875/864 1029/1024
catakleismic 4.684 1.176 21.501 ⟨⟨ 6 5 22 -6 18 37 ]] [1 0 1 -3], 0 6 5 22]] 225/224 4375/4374
unicorn 4.847 2.090 40.913 ⟨⟨ 8 13 23 2 14 17 ]] [1 2 3 4], 0 -8 -13 -23]] 126/125 10976/10935
rodan 5.012 1.773 37.112 ⟨⟨ 3 17 -1 20 -10 -50 ]] [1 1 -1 3], 0 3 17 -1]] 245/243 1029/1024
shrutar 5.101 2.185 47.377 ⟨⟨ 4 -8 14 -22 11 55 ]] [2 1 9 -2], 0 2 -4 7]] 245/243 2048/2025
tritonic 5.291 2.039 47.578 ⟨⟨ 5 -11 -12 -29 -33 3 ]] [1 4 -3 -3], 0 -5 11 12]] 225/224 50421/50000
quartonic 5.395 1.758 42.632 ⟨⟨ 11 18 5 3 -23 -39 ]] [1 2 3 3], 0 -11 -18 -5]] 1728/1715 4000/3969
clyde 5.610 1.802 47.261 ⟨⟨ 12 10 25 -12 6 30 ]] [1 6 6 12], 0 -12 -10 -25]] 245/243 3136/3125
septimin 5.874 1.896 54.502 ⟨⟨ 11 -6 10 -35 -15 40 ]] [1 4 1 5], 0 -11 6 -10]] 225/224 84035/82944
echidna 5.925 1.984 58.033 ⟨⟨ 6 -12 10 -33 -1 57 ]] [2 1 9 2], 0 3 -6 5]] 1728/1715 2048/2025
compton 5.927 1.219 35.686 ⟨⟨ 0 12 24 19 38 22 ]] [12 19 0 -22], 0 0 1 2]] 225/224 250047/250000
bidia 5.940 1.921 56.474 ⟨⟨ 4 -8 -20 -22 -43 -24 ]] [4 0 22 43], 0 1 -2 -5]] 2048/2025 3136/3125
wizard 6.372 1.207 40.846 ⟨⟨ 12 -2 20 -31 -2 52 ]] [2 1 5 2], 0 6 -1 10]] 225/224 118098/117649
buzzard 6.420 1.396 47.963 ⟨⟨ 4 21 -3 24 -16 -66 ]] [1 0 -6 4], 0 4 21 -3]] 1728/1715 5120/5103
semisept 6.499 1.434 50.472 ⟨⟨ 17 6 15 -30 -24 18 ]] [1 12 6 12], 0 -17 -6 -15]] 1728/1715 3136/3125
hemiwürschmidt 6.598 0.560 20.307 ⟨⟨ 16 2 5 -34 -37 6 ]] [1 15 4 7], 0 -16 -2 -5]] 2401/2400 3136/3125
hemikleismic 6.704 1.390 52.054 ⟨⟨ 12 10 -9 -12 -48 -49 ]] [1 0 1 4], 0 12 10 -9]] 4000/3969 6144/6125
sensei 6.706 1.580 59.218 ⟨⟨ 7 9 32 -2 31 49 ]] [1 6 8 23], 0 -7 -9 -32]] 225/224 78732/78125
hemififths 6.812 0.575 22.243 ⟨⟨ 2 25 13 35 15 -40 ]] [1 1 -5 -1], 0 2 25 13]] 2401/2400 5120/5103
pluto 7.022 1.400 57.514 ⟨⟨ 7 26 25 25 20 -15 ]] [1 5 15 15], 0 -7 -26 -25]] 4000/3969 10976/10935
amity 7.127 0.559 23.649 ⟨⟨ 5 13 -17 9 -41 -76 ]] [1 3 6 -2], 0 -5 -13 17]] 4375/4374 6144/6125
merman 7.243 1.260 55.078 ⟨⟨ 7 -15 -16 -40 -45 5 ]] [1 5 -5 -5], 0 -7 15 16]] 225/224 2500000/2470629
parakleismic 7.343 0.610 27.431 ⟨⟨ 13 14 35 -8 19 42 ]] [1 5 6 12], 0 -13 -14 -35]] 3136/3125 4375/4374
slender 7.359 1.261 56.934 ⟨⟨ 13 -10 6 -46 -27 42 ]] [1 2 2 3], 0 -13 10 -6]] 225/224 589824/588245
hemithirds 7.385 0.974 44.284 ⟨⟨ 15 -2 -5 -38 -50 -6 ]] [1 4 2 2], 0 -15 2 5]] 1029/1024 3136/3125
unidec 7.662 0.785 38.393 ⟨⟨ 12 22 -4 7 -40 -71 ]] [2 5 8 5], 0 -6 -11 2]] 1029/1024 4375/4374
ennealimmal 7.714 0.073 3.610 ⟨⟨ 18 27 18 1 -22 -34 ]] [9 1 1 12], 0 2 3 2]] 2401/2400 4375/4374
guiron 7.795 0.939 47.544 ⟨⟨ 3 -24 -1 -45 -10 65 ]] [1 1 7 3], 0 3 -24 -1]] 1029/1024 10976/10935
misty 7.993 0.691 36.802 ⟨⟨ 3 -12 -30 -26 -56 -36 ]] [3 0 26 56], 0 1 -4 -10]] 3136/3125 5120/5103
hendecatonic 8.442 0.692 41.081 ⟨⟨ 11 -11 22 -43 4 82 ]] [11 0 43 -4], 0 1 -1 2]] 6144/6125 10976/10935
harry 8.457 0.572 34.077 ⟨⟨ 12 34 20 26 -2 -49 ]] [2 4 7 7], 0 -6 -17 -10]] 2401/2400 19683/19600
hemiseven 8.570 0.924 56.557 ⟨⟨ 6 29 -2 32 -20 -86 ]] [1 4 14 2], 0 -6 -29 2]] 1029/1024 19683/19600
tritikleismic 8.707 0.892 56.337 ⟨⟨ 18 15 -6 -18 -60 -56 ]] [3 0 3 10], 0 6 5 -2]] 1029/1024 15625/15552
quadritikleismic 8.908 0.593 39.231 ⟨⟨ 24 20 16 -24 -42 -19 ]] [4 0 4 7], 0 6 5 4]] 2401/2400 15625/15552
hemischis 9.155 0.656 45.817 ⟨⟨ 2 -16 25 -30 34 103 ]] [1 0 15 -17], 0 2 -16 25]] 6144/6125 19683/19600
subpental 9.279 0.757 54.303 ⟨⟨ 14 18 45 -4 32 54 ]] [1 6 8 17], 0 -14 -18 -45]] 3136/3125 19683/19600
countercata 9.466 0.698 52.128 ⟨⟨ 6 5 -31 -6 -66 -86 ]] [1 0 1 11], 0 6 5 -31]] 5120/5103 15625/15552
grendel 9.823 0.645 51.834 ⟨⟨ 23 -1 13 -55 -44 33 ]] [1 9 2 7], 0 -23 1 -13]] 6144/6125 16875/16807
kwai 9.844 0.675 54.476 ⟨⟨ 1 33 27 50 40 -30 ]] [1 0 -50 -40], 0 1 33 27]] 5120/5103 16875/16807
bischismic 10.11 0.643 54.744 ⟨⟨ 2 -16 -40 -30 -69 -48 ]] [2 0 30 69], 0 1 -8 -20]] 3136/3125 32805/32768
sesquiquartififths 10.196 0.130 11.244 ⟨⟨ 4 -32 -15 -60 -35 55 ]] [1 1 7 5], 0 4 -32 -15]] 2401/2400 32805/32768
octoid 10.207 0.491 42.670 ⟨⟨ 24 32 40 -5 -4 3 ]] [8 1 3 3], 0 3 4 5]] 4375/4374 16875/16807
tertiaseptal 10.247 0.149 12.995 ⟨⟨ 22 -5 3 -59 -57 21 ]] [1 3 2 3], 0 -22 5 -3]] 2401/2400 65625/65536
mirkat 10.652 0.628 59.376 ⟨⟨ 18 39 42 20 16 -12 ]] [3 2 1 2], 0 6 13 14]] 16875/16807 19683/19600
pontiac 10.787 0.146 14.133 ⟨⟨ 1 -8 39 -15 59 113 ]] [1 0 15 -59], 0 1 -8 39]] 4374/4375 32805/32768
nessafof 10.834 0.461 45.048 ⟨⟨ 21 15 -12 -25 -78 -70 ]] [3 2 5 10], 0 7 5 -4]] 6144/6125 250047/250000
chromat 11.375 0.533 57.499 ⟨⟨ 15 39 48 27 34 2 ]] [3 4 5 6], 0 5 13 16]] 10976/10935 235298/234375
septiquarter 11.425 0.494 53.760 ⟨⟨ 7 38 -4 44 -26 -116 ]] [1 3 10 2], 0 -7 -38 4]] 5120/5103 420175/419904
sengagen 11.446 0.531 57.978 ⟨⟨ 29 16 40 -42 -18 48 ]] [1 1 2 2], 0 29 16 40]] 3136/3125 420175/419904
enneadecal 11.926 0.092 10.954 ⟨⟨ 19 19 57 -14 37 79 ]] [19 0 14 -37], 0 1 1 3]] 4375/4374 703125/702464
septisuperfourth 11.986 0.495 59.241 ⟨⟨ 18 -14 30 -64 -3 109 ]] [2 4 4 7], 0 -9 7 -15]] 6144/6125 118098/117649
quinmite 12.636 0.281 37.322 ⟨⟨ 34 29 23 -33 -59 -28 ]] [1 27 24 20], 0 -34 -29 -23]] 2401/2400 1959552/1953125
gamera 12.911 0.271 37.648 ⟨⟨ 23 40 1 10 -63 -110 ]] [1 6 10 3], 0 -23 -40 -1]] 4375/4374 589824/588245
amicable 12.973 0.324 45.473 ⟨⟨ 20 52 31 36 -7 -74 ]] [1 3 6 5], 0 -20 -52 -31]] 2401/2400 1600000/1594323
semidimfourth 13.269 0.377 55.249 ⟨⟨ 31 41 53 -7 -3 8 ]] [1 21 28 36], 0 -31 -41 -53]] 4375/4374 235298/234375
term 13.877 0.124 19.950 ⟨⟨ 3 -24 -54 -45 -94 -58 ]] [3 0 45 94], 0 1 -8 -18]] 32805/32768 250000/250047
mitonic 14.474 0.144 25.184 ⟨⟨ 17 35 -21 16 -81 -147 ]] [1 16 32 -15], 0 -17 -35 21]] 4375/4374 2100875/2097152
fifthplus 14.679 0.144 25.840 ⟨⟨ 23 -13 42 -74 2 134 ]] [1 11 -3 20], 0 -23 13 -42]] 65625/65536 420175/419904
emmthird 14.897 0.090 16.736 ⟨⟨ 14 59 33 61 13 -89 ]] [1 11 42 25], 0 -14 -59 -33]] 2401/2400 14348907/14336000
decoid 14.948 0.182 33.902 ⟨⟨ 20 -30 -10 -94 -72 61 ]] [10 0 47 36], 0 2 -3 -1]] 2400/2401 67108864/66976875
neptune 15.001 0.125 23.427 ⟨⟨ 40 22 21 -58 -79 -13 ]] [1 21 13 13], 0 -40 -22 -21]] 2401/2400 48828125/48771072
mutt 15.075 0.150 28.406 ⟨⟨ 21 3 -36 -44 -116 -92 ]] [3 5 7 8], 0 -7 -1 12]] 65625/65536 250047/250000
tsaharuk 15.750 0.148 30.697 ⟨⟨ 5 -40 24 -75 24 168 ]] [1 1 7 0], 0 5 -40 24]] 32805/32768 420175/419904
septichrome 16.640 0.073 16.814 ⟨⟨ 15 51 72 46 72 24 ]] [3 3 1 0], 0 5 17 24]] 250047/250000 2460375/2458624
quasiorwell 16.766 0.153 35.832 ⟨⟨ 38 -3 8 -93 -94 27 ]] [1 31 0 9], 0 -38 3 -8]] 2401/2400 29360128/29296875
vishnu 16.789 0.178 41.912 ⟨⟨ 14 6 74 -23 78 155 ]] [2 4 5 10], 0 -7 -3 -37]] 4375/4374 29360128/29296875
newt 16.876 0.176 41.878 ⟨⟨ 2 -57 -28 -95 -50 95 ]] [1 1 19 11], 0 2 -57 -28]] 2401/2400 33554432/33480783
supermajor 16.944 0.045 10.836 ⟨⟨ 37 46 75 -13 15 45 ]] [1 15 19 30], 0 -37 -46 -75]] 4375/4374 52734375/52706752
qak 17.375 0.116 29.267 ⟨⟨ 41 14 60 -73 -20 100 ]] [1 27 11 40], 0 -41 -14 -60]] 420175/419904 703125/702464
vulture 17.675 0.142 36.985 ⟨⟨ 4 21 -56 24 -100 -189 ]] [1 0 -6 25], 0 4 21 -56]] 4375/4374 33554432/33480783
septidiasemi 18.931 0.148 44.115 ⟨⟨ 26 -37 -12 -119 -92 76 ]] [1 25 -31 -8], 0 -26 37 12]] 2401/2400 2152828125/2147483648
acrokleismic 19.245 0.182 56.184 ⟨⟨ 32 33 92 -22 56 121 ]] [1 10 11 27], 0 -32 -33 -92]] 4375/4374 2202927104/2197265625
pnict 19.517 0.144 45.660 ⟨⟨ 39 30 -18 -43 -138 -126 ]] [3 10 11 6], 0 -13 -10 6]] 250047/250000 2100875/2097152
maviloid 19.870 0.175 57.632 ⟨⟨ 52 56 41 -32 -81 -62 ]] [1 31 34 26], 0 -52 -56 -41]] 2401/2400 1224440064/1220703125
tokko 19.992 0.133 44.417 ⟨⟨ 13 67 -6 76 -46 -202 ]] [1 12 56 -2], 0 -13 -67 6]] 420175/419904 5250987/5242880

Junk temperaments

Name Complexity Error (¢) Badness (k) Wedgie Mapping Commas
0.266 400.986 23.561 ⟨⟨ 0 0 1 0 2 2 ]] [1 2 2 0], 0 0 0 1]] 4/3 5/3
0.340 252.955 24.334 ⟨⟨ 0 1 0 2 0 -3 ]] [1 2 0 3], 0 0 1 0]] 4/3 7/6
0.367 309.005 34.752 ⟨⟨ 0 1 1 2 2 0 ]] [1 2 0 0], 0 0 1 1]] 4/3 7/5
0.373 199.358 23.114 ⟨⟨ 1 1 1 -1 -1 0 ]] [1 0 1 1], 0 1 1 1]] 6/5 7/5
0.401 168.811 22.624 ⟨⟨ 1 0 1 -2 -1 2 ]] [1 0 2 1], 0 1 0 1]] 5/4 7/6
0.437 223.834 35.689 ⟨⟨ 1 0 0 -2 -3 0 ]] [1 0 2 3], 0 1 0 0]] 5/4 8/7
0.458 152.797 26.720 ⟨⟨ 1 1 2 -1 0 2 ]] [1 0 1 0], 0 1 1 2]] 6/5 9/7
0.470 135.120 24.843 ⟨⟨ 1 1 0 -1 -3 -3 ]] [1 0 1 3], 0 1 1 0]] 6/5 8/7
0.508 134.886 29.047 ⟨⟨ 0 0 2 0 3 5 ]] [2 3 5 0], 0 0 0 1]] 6/5 9/8
0.517 100.760 22.434 ⟨⟨ 1 2 1 1 -1 -3 ]] [1 0 -1 1], 0 1 2 1]] 7/6 10/9
0.536 159.295 38.111 ⟨⟨ 1 0 -1 -2 -4 -2 ]] [1 0 2 4], 0 1 0 -1]] 5/4 21/16
0.603 180.305 54.612 ⟨⟨ 1 1 -1 -1 -4 -5 ]] [1 0 1 4], 0 1 1 -1]] 6/5 21/16
0.613 126.550 39.612 ⟨⟨ 0 2 0 3 0 -6 ]] [2 3 0 6], 0 0 1 0]] 8/7 9/7
antitonic 0.631 58.311 19.373 ⟨⟨ 0 2 2 3 3 -1 ]] [2 3 0 1], 0 0 1 1]] 9/8 15/14
0.637 70.842 23.922 ⟨⟨ 1 -1 0 -4 -3 3 ]] [1 0 4 3], 0 1 -1 0]] 8/7 15/14
0.648 81.437 28.454 ⟨⟨ 1 2 0 1 -3 -6 ]] [1 0 -1 3], 0 1 2 0]] 8/7 10/9
0.649 103.614 36.419 ⟨⟨ 1 -1 1 -4 -1 5 ]] [1 0 4 1], 0 1 -1 1]] 7/6 16/15
0.656 66.836 23.962 ⟨⟨ 1 2 3 1 2 1 ]] [1 0 -1 -2], 0 1 2 3]] 10/9 15/14
0.724 136.735 59.654 ⟨⟨ 2 2 2 -1 -2 -1 ]] [2 0 1 2], 0 1 1 1]] 7/6 25/18
0.736 97.698 44.046 ⟨⟨ 2 1 2 -3 -2 2 ]] [1 1 2 2], 0 2 1 2]] 7/6 25/24
0.736 132.937 59.948 ⟨⟨ 1 3 2 2 0 -4 ]] [1 0 -2 0], 0 1 3 2]] 9/7 21/20