Archytas–diatonic equivalence continuum

From Xenharmonic Wiki
Jump to navigation Jump to search

The Archytas–diatonic equivalence continuum, or septimal–diatonic equivalence continuum, is a continuum of 2.3.7 subgroup temperaments which equate a number of Archytas commas (64/63) with the limma (256/243).

All temperaments in the continuum satisfy (64/63)n ~ 256/243. Varying n results in different temperaments listed in the table below. It converges to archy as n approaches infinity. If we allow non-integer and infinite n, the continuum describes the set of all 2.3.7 subgroup temperaments supported by 5edo (due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them). The just value of n is 3.3093…, and temperaments near this tend to be the most accurate ones.

256/243 is the characteristic 3-limit comma tempered out in 5edo. In each case, we notice that n equals the order of harmonic 7 in the corresponding comma, and equals the number of generators to obtain a harmonic 3 in the MOS scale.

Temperaments in the continuum
n Temperament Comma
Ratio Monzo
0 2.3.7 blackwood 256/243 [8 -5
1 No-fives trienstonic 28/27 [2 -3 1
2 Semaphore 49/48 [-4 -1 2
2.5 Cloudy 16807/16384 [-14 0 5
3 Slendric 1029/1024 [-10 1 3
3.3 Slendrismic* [very long] [118 -16 -33
3.5 Septiness 67108864/66706983 [26 -4 -7
4 Buzzard 65536/64827 [16 -3 -4
5 5 & 75 4194304/4084101 [22 -5 -5
Archy 64/63 [6 -2 -1

* The name "slendrismic" may be changed to minimise confusion with confusingly named temperaments, or those temperaments may be changed instead, either way consensus would first need to be formed.