83ed4
Jump to navigation
Jump to search
Prime factorization
83 (prime)
Step size
28.9157¢
Octave
42\83ed4 (1214.46¢)
Twelfth
66\83ed4 (1908.43¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 81ed4 | 83ed4 | 85ed4 → |
83 equal divisions of the 4th harmonic (abbreviated 83ed4) is a nonoctave tuning system that divides the interval of 4/1 into 83 equal parts of about 28.9 ¢ each. Each step represents a frequency ratio of 41/83, or the 83rd root of 4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 28.916 | |
2 | 57.831 | 30/29, 31/30 |
3 | 86.747 | 21/20 |
4 | 115.663 | 31/29 |
5 | 144.578 | 38/35 |
6 | 173.494 | |
7 | 202.41 | |
8 | 231.325 | |
9 | 260.241 | |
10 | 289.157 | 13/11 |
11 | 318.072 | |
12 | 346.988 | 11/9 |
13 | 375.904 | |
14 | 404.819 | |
15 | 433.735 | 9/7 |
16 | 462.651 | 17/13, 30/23 |
17 | 491.566 | |
18 | 520.482 | 23/17, 27/20 |
19 | 549.398 | |
20 | 578.313 | |
21 | 607.229 | |
22 | 636.145 | 13/9 |
23 | 665.06 | |
24 | 693.976 | |
25 | 722.892 | |
26 | 751.807 | 17/11 |
27 | 780.723 | 11/7 |
28 | 809.639 | |
29 | 838.554 | |
30 | 867.47 | 33/20, 38/23 |
31 | 896.386 | |
32 | 925.301 | 29/17 |
33 | 954.217 | |
34 | 983.133 | 30/17 |
35 | 1012.048 | |
36 | 1040.964 | 31/17 |
37 | 1069.88 | 13/7 |
38 | 1098.795 | 17/9 |
39 | 1127.711 | |
40 | 1156.627 | 37/19, 39/20 |
41 | 1185.542 | |
42 | 1214.458 | |
43 | 1243.373 | |
44 | 1272.289 | |
45 | 1301.205 | |
46 | 1330.12 | |
47 | 1359.036 | |
48 | 1387.952 | 29/13 |
49 | 1416.867 | |
50 | 1445.783 | 30/13 |
51 | 1474.699 | |
52 | 1503.614 | 31/13 |
53 | 1532.53 | |
54 | 1561.446 | 37/15 |
55 | 1590.361 | |
56 | 1619.277 | |
57 | 1648.193 | |
58 | 1677.108 | 29/11 |
59 | 1706.024 | |
60 | 1734.94 | 30/11 |
61 | 1763.855 | |
62 | 1792.771 | 31/11 |
63 | 1821.687 | |
64 | 1850.602 | |
65 | 1879.518 | |
66 | 1908.434 | |
67 | 1937.349 | |
68 | 1966.265 | |
69 | 1995.181 | |
70 | 2024.096 | 29/9 |
71 | 2053.012 | |
72 | 2081.928 | 10/3 |
73 | 2110.843 | |
74 | 2139.759 | 31/9 |
75 | 2168.675 | 7/2 |
76 | 2197.59 | |
77 | 2226.506 | |
78 | 2255.422 | |
79 | 2284.337 | |
80 | 2313.253 | 19/5 |
81 | 2342.169 | |
82 | 2371.084 | |
83 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +14.5 | +6.5 | +0.0 | -10.4 | -8.0 | +14.3 | +14.5 | +13.0 | +4.0 | +12.5 | +6.5 |
Relative (%) | +50.0 | +22.4 | +0.0 | -36.0 | -27.6 | +49.5 | +50.0 | +44.8 | +14.0 | +43.4 | +22.4 | |
Steps (reduced) |
42 (42) |
66 (66) |
83 (0) |
96 (13) |
107 (24) |
117 (34) |
125 (42) |
132 (49) |
138 (55) |
144 (61) |
149 (66) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +12.5 | -0.2 | -3.9 | +0.0 | +10.7 | -1.5 | -8.4 | -10.4 | -8.1 | -1.9 | +7.9 |
Relative (%) | +43.2 | -0.5 | -13.6 | +0.0 | +37.0 | -5.2 | -28.9 | -36.0 | -28.1 | -6.6 | +27.2 | |
Steps (reduced) |
154 (71) |
158 (75) |
162 (79) |
166 (0) |
170 (4) |
173 (7) |
176 (10) |
179 (13) |
182 (16) |
185 (19) |
188 (22) |