777edo
Jump to navigation
Jump to search
Prime factorization
3 × 7 × 37
Step size
1.5444¢
Fifth
455\777 (702.703¢) (→65\111)
Semitones (A1:m2)
77:56 (118.9¢ : 86.49¢)
Dual sharp fifth
455\777 (702.703¢) (→65\111)
Dual flat fifth
454\777 (701.158¢)
Dual major 2nd
132\777 (203.861¢) (→44\259)
Consistency limit
3
Distinct consistency limit
3
← 776edo | 777edo | 778edo → |
The 777 equal divisions of the octave, or the 777-tone equal temperament (777tet), 777 equal temperament (777et) when viewed from a regular temperament perspective, divides the octave into 777 equal parts of about 1.544 cents each.
Theory
777edo is a dual fifths system with a consistency limit of only 3.
If the harmonic 3 is excluded, it is an excellent 2.5.7.9.11.13 subgroup tuning, with the comma basis {4459/4455, 41503/41472, 496125/495616, 123201/123200, 105644/105625}. In addition, it tempers out the landscape comma in the 2.9.5.7 subgroup.
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.748 | -0.213 | -0.486 | -0.049 | +0.033 | -0.373 | +0.534 | +0.064 | +0.556 | +0.262 | +0.297 |
relative (%) | +48 | -14 | -31 | -3 | +2 | -24 | +35 | +4 | +36 | +17 | +19 | |
Steps (reduced) |
1232 (455) |
1804 (250) |
2181 (627) |
2463 (132) |
2688 (357) |
2875 (544) |
3036 (705) |
3176 (68) |
3301 (193) |
3413 (305) |
3515 (407) |