777edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 776edo777edo778edo →
Prime factorization 3 × 7 × 37
Step size 1.5444¢
Fifth 455\777 (702.703¢) (→65\111)
Semitones (A1:m2) 77:56 (118.9¢ : 86.49¢)
Dual sharp fifth 455\777 (702.703¢) (→65\111)
Dual flat fifth 454\777 (701.158¢)
Dual major 2nd 132\777 (203.861¢) (→44\259)
Consistency limit 3
Distinct consistency limit 3

The 777 equal divisions of the octave, or the 777-tone equal temperament (777tet), 777 equal temperament (777et) when viewed from a regular temperament perspective, divides the octave into 777 equal parts of about 1.544 cents each.

Theory

777edo is a dual fifths system with a consistency limit of only 3.

If the harmonic 3 is excluded, it is an excellent 2.5.7.9.11.13 subgroup tuning, with the comma basis {4459/4455, 41503/41472, 496125/495616, 123201/123200, 105644/105625}. In addition, it tempers out the landscape comma in the 2.9.5.7 subgroup.


Approximation of odd harmonics in 777edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) +0.748 -0.213 -0.486 -0.049 +0.033 -0.373 +0.534 +0.064 +0.556 +0.262 +0.297
relative (%) +48 -14 -31 -3 +2 -24 +35 +4 +36 +17 +19
Steps
(reduced)
1232
(455)
1804
(250)
2181
(627)
2463
(132)
2688
(357)
2875
(544)
3036
(705)
3176
(68)
3301
(193)
3413
(305)
3515
(407)