68ed7/3
Jump to navigation
Jump to search
Prime factorization
22 × 17
Step size
21.5716¢
Octave
56\68ed7/3 (1208.01¢) (→14\17ed7/3)
Twelfth
88\68ed7/3 (1898.3¢) (→22\17ed7/3)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 67ed7/3 | 68ed7/3 | 69ed7/3 → |
68 equal divisions of 7/3 (abbreviated 68ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 68 equal parts of about 21.6 ¢ each. Each step represents a frequency ratio of (7/3)1/68, or the 68th root of 7/3.
Intervals
Degrees | Enneatonic | Pentadecatonic | Enneadecatonic | ed11\9~ed7/3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1+ | G+ | G' | Q+ | 21.5686 | 21.5716 | ||||||
Jv, | Av, | Jbv, | Abv, | W\\v | Wbv | |||||||
2 | 1# | G# | G^ | Qp/W\\\ | Q#/Wb | 43.13725 | 43.1433 | |||||
Jv | Av | Jbv | Abv | |||||||||
3 | 1#+ | G#+ | G^' | Qpq | Q#+ | 64.7059 | 64.7149 | |||||
J, | A, | Jb, | Ab, | W\ | Wd | |||||||
4 | 1x/2bb | Gx | J | A | Jb | Ab | W | 86.2745 | 86.2865 | |||
Jbb | Abb | |||||||||||
5 | 2bv | Jbv | Abv | J'/A\\v, | A'/B\\v, | Jb' | Ab' | Wq | W+ | W+/Ebd | 107.8431 | 107.8582 |
G#v, | ||||||||||||
6 | 2b | Jb | Ab | J^/A\\v | A^/B\\v | Jb^ | Ab^ | Wp | W# | W#/Eb | 129.4118 | 129.4298 |
G#v | ||||||||||||
7 | 2d | Jd | Ad | J^'/A\\, | A^'/B\\, | Jb^' | Ab^' | Wpq/E\\\ | W#+/E(b)d | 150.9804 | 151.0014 | |
G#, | ||||||||||||
8 | 2 | J | A | A\\ | B\\ | G# | E\\ | Eb | E | 172.549 | 172.57305 | |
9 | 2+ | J+ | A+ | A\\'\/Jpv, | B\\'/Apv, | G#' | E\ | Ed | E+/Rd | 194.11765 | 194.1447 | |
Jv, | Av, | |||||||||||
10 | 2# | J# | A# | A\\^/Jpv | B\\^/Apv | G#^ | E | R | 215.6863 | 215.7163 | ||
Jv | Av | |||||||||||
11 | 2#+ | J#+ | A#+ | Jp, | Ap, | G#^' | Epq/R\\\ | E+/Rbd | R+/Tbd | 237.2549 | 237.2879 | |
J, | A, | |||||||||||
12 | 2x/3bb | Jx/Abb | Ax/Bbb | Jp | Ap | J | A | Ep/R\\ | E#/Rb | R#/Tb | 258.8235 | 258.8596 |
13 | 3bd | Abd | Bbd | Jp'/Av, | Ap^/Bv | J'/A, | A'/Bv, | Epq/R\ | E#+/Rd | R#+/Td | 280.3922 | 280.4312 |
14 | 3b | Ab | Bb | Jp^/Av | Ap^/Bv | J^/Av | A^/Bv | R | T | 301.9608 | 302.0028 | |
15 | 3d | Ad | Bd | Jp^'/A, | Ap^'/B, | J^'/A, | A^'/Bv, | Rq/T\\\ | R+/Tbd | T+/Ybd | 323.5294 | 323.5745 |
16 | 3 | A | B | A | B | A | B | Rp/T\\ | R#/Tb | T#/Yb | 345.098 | 345.1461 |
17 | 3+ | A+ | B+ | A'/Bv, | B'/Cv, | A'/Bbv, | B^'/Cbv, | Rpq/T\ | R+/Tbd | T#+/Yd | 366.6 | 366.7177 |
18 | 3# | A# | B# | A^/Bv | B^/Cv | A^/Bbv | B^/Cbv | T | Y | 388.2353 | 388.2894 | |
19 | 3#+ | A#+ | B#+ | A^'/B, | B^'/Cv, | A^'/Bb, | B^'/Cbv, | Tq\A\\\ | T#+/Ad | Y+/Ubd | 409.8039 | 409.861 |
20 | 3x/4b | Ax/Bbb | Bx/Cbb | B | C | Bb | Cb | Tp\A\\ | T#/Ab | Y#/Ub | 431.37255 | 431.4326 |
21 | 4bd | Bbd | Cbd | B^'C\\v, | C'/Q\\v, | Bb'/A#v, | Cb'/B#v, | Tpq\A\ | T#+/Ad | Y#+/Ud | 452.9412 | 453.00425 |
22 | 4b | Bb | Cb | B^/C\\v | C^/Q\\v | Bb^/A#v | Cb^/B#v | A | U | 474.5098 | 474.5759 | |
23 | 4d | B | Cd | B^'/C\\v, | C^'/Q\\, | Bb^'/A#, | Cb^'/B#, | Apq | A+ | U+/Abd | 496.0784 | 496.1475 |
24 | 4 | B | C | C\\ | Q\\ | A# | B# | Ap | A# | U#/Ab | 517.6471 | 517.7191 |
25 | 4+ | B+ | C+ | C\\'/Bpv, | Q\\'/Cpv, | A#'/Bv, | B#'/Cv, | Apq/S\\\ | A#+/Sbd | U#+/Ad | 539.2157 | 539.2908 |
26 | 4# | B# | C# | C\\^/Bpv | Q\\^/Cpv | A#^/Bv | B#^/Cv | S\\ | Sb | A | 560.7843 | 560.8624 |
27 | 4#+/5bd | B#+/Cbd | C#/Dbd | C\\^'/Bp, | Q\\^'/Cpv, | A#^'/B, | B#^'/C, | S\ | Sd | A+/Sd | 582.3529 | 582.434 |
28 | 5b | Cb | Qb | Bp | Cp | B | C | S | 603.9216 | 604.0057 | ||
29 | 5d | Cd | Qd | Bp'/Cv, | Cp'/Qv, | B'/Cv, | C'/Qv, | Sq/D\\\ | S+/Dbd | 625.4902 | 625.5773 | |
30 | 5 | C | Q | Bp^/Cv | Cp^/Qv | B^/Cv | C^/Qv | Sp/D\\ | S#/Db | 647.0588 | 647.1489 | |
31 | 5+ | C+ | Q+ | Bp^'/C, | Cp^/'Q, | B^'/C, | C^'/Q, | Spq/D\ | S#+/Dbd | 668.62745 | 668.7206 | |
32 | 5# | C# | Q# | C | Q | C | Q | D | 690.1961 | 690.2922 | ||
33 | 5#+ | C#+ | Q#+ | C'/Qv, | Q'/Dv, | C'/Qbv, | Q'/Dbv, | Dq/F\\\ | D+/Fbd | 711.7647 | 711.8638 | |
34 | 5x/6bb | Cx/Qbb | Qx/Dbb | C^/Qv | Q^/Dv | C^/Qbv | Q^/Dbv | Dp/F\\ | D#/Fb | 733.3 | 733.43545 | |
35 | 6bd | Qbd | Dbd | C^/Qv | Q^/Dv | C^/Qbv | Q^/Dbv | Dp/F\\ | D#/Fb | 754.902 | 755.0071 | |
36 | 6b | Qb | Db | Q | D | Qb | Db | F | 776.4706 | 776.5787 | ||
37 | 6d | Qd | Dd | Q'/D\\v, | D'/E\\v, | Qb'/C#v, | Db'/Q#v, | Fq/G\\\ | F+/Gbd | 798.0392 | 798.15035 | |
38 | 6 | Q | D | Q^/D\\v | D^/E\\v | Qb^/C#v | Db^/Q#v | Fp/G\\ | F#/Gb | 819.6078 | 819.722 | |
39 | 6+ | Q+ | D+ | Q^'/D\\, | D^'/E\\, | Qb^'/C#, | Db^'/Q#, | Fpq/G\ | F+/Gd | 841.1765 | 841.2936 | |
40 | 6# | Q# | D# | D\\ | E\\ | C# | Q# | G | 862.7451 | 862.8982 | ||
41 | 6#+ | Q#+ | D#+ | D\\'/Qpv, | E\\'/Dpv, | C#'/Qv, | Q#'/Dv, | Gq | G+ | G+\Hd | 884.3137 | 884.4369 |
42 | 6x/7bb | Qx/Dbb | Dx/Sbb | D\\^/Qpv | E\\^/Dpv | C#^/Qv | Q#^/Dv | Gp | G# | H | 905.88235 | 906.0085 |
43 | 7bd | Dbd | Sbd | D\\^'/Qp, | E\\^'/Dp, | C#^'/Qv, | Q#^'/Dv, | Gpq/Z\\\ | G#+/Zbd | Hd | 927.451 | 927.5801 |
44 | 7b | Db | Sb | Qp | Dp | Q | D | Z\\ | Zb | H# | 949.0196 | 949.1518 |
45 | 7d | Dd | Sd | Qp'/Dv, | Dp'/Ev, | Q'/Dv, | D'/Sv, | Z\ | Zd | H#+/Jbd | 970.5882 | 970.7234 |
46 | 7 | D | S | Qp^/Dv | Dp^/Ev | Q^/Dv | D^/Sv | Z | Jb | 992.1569 | 992.295 | |
47 | 7+ | D+ | S+ | Qp^'/D, | Dp^'/E, | Q^'/D, | D^'/S, | Zq/X\\\ | Z+/Xbd | Jd | 1013.7255 | 1013.8667 |
48 | 7# | D# | S# | D | E | D | S | Zp/X\\ | Z#/Xb | J | 1035.2941 | 1035.4383 |
49 | 7#+ | D#+ | S#+ | D'/Ev, | E'/Sv, | D' | S' | Zpq/X\ | Z#+/Xd | J+/Zbd | 1056.86275 | 1057.0099 |
Ebv, | ||||||||||||
50 | 7x/8bb | Dx/Ebb | Sx/Ebb | D^/Ev | E^/Sv | D^ | S^ | X | J#/Zb | 1078.4314 | 1078.58155 | |
Ebv | ||||||||||||
51 | 8bd | Ebd | D^'/E, | E^'/Sv, | D^' | S^' | Xq/C\\\ | X+/Cbd | J#+/Zd | 1100 | 1100.1532 | |
Eb, | ||||||||||||
52 | 8b | Eb | E | S | Eb | Xp/C\\ | X#/Cb | Z | 1121.5686 | 1121.7248 | ||
53 | 8d | Ed | E' | S' | Eb' | Xpq/C\ | X#+/Cbd | Z+/Xd | 1143.13725 | 1143.2964 | ||
Fv, | D#v, | S#v, | ||||||||||
54 | 8 | E | E^ | S^ | Eb^ | C | X | 1164.7059 | 1164.8681 | |||
Fv | D#v | S#v | ||||||||||
55 | 8+ | E+ | E^' | S^' | Eb^' | Cq/V\\\ | C+/Vbd | X+/Cbd | 1186.2745 | 1186.4397 | ||
F, | D#, | S#, | ||||||||||
56 | 8# | E# | F | D# | S# | Cp/V\\ | C#/Vb | X#/Cb | 1207.8731 | 1208.0113 | ||
57 | 8#+ | E#+ | F'/G\\v, | D#' | S#' | Cpq/V\ | C#+/Vd | X#+/Cd | 1229.4118 | 1229.583 | ||
Ev, | ||||||||||||
58 | 8x/9bb | Ex/Fbb | F^/G\\v | D#^ | S#^ | V | C | 1250.9804 | 1251.1546 | |||
Ev | ||||||||||||
59 | 9bd | Fbd | F^'/G\\, | D#^' | S#^' | Vq | V+ | C+/Vd | 1272.2549 | 1272.7262 | ||
E, | ||||||||||||
60 | 9b | Fb | G\\ | E | Vp | V# | V | 1294.11765 | 1294.2979 | |||
61 | 9d | Fd | G\\'/Fpv, | E'/Fv, | Vpq/B\\\ | V#+/Bbd | V+/Bbd | 1315.6863 | 1315.8695 | |||
62 | 9 | F | G\\^/Fpv | E^/Fv | B\\ | Bb | V#/Bb | 1337.2549 | 1337.4411 | |||
63 | 9+ | F+ | G\\^/'Fp, | E^'/F, | B\ | Bd | V#+/Bd | 1358.8235 | 1359.01275 | |||
64 | 9# | F# | Fp | F | B | 1380.3922 | 1380.5844 | |||||
65 | 9#+/1bd | F#+/Gbd | Fp' | F' | Bpq/Q\\ | B+/Qbd | 1401.9608 | 1402.156 | ||||
Gv | ||||||||||||
66 | 1b | Gb | Fp^ | F^ | Bp/Q\\ | B#/Qb | 1423.5294 | 1423.7276 | ||||
Gv | ||||||||||||
67 | 1d | Gd | Fp^' | F^' | Bpq/Q\ | B#+/Qd | 1445.098 | 1445.993 | ||||
Gv, | ||||||||||||
68 | 1 | G | Q | 1466.6 | 1466.8709 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.77 | -0.46 | +1.32 | -4.69 | -5.23 | -0.46 | -3.45 | -0.91 | +1.40 | -0.62 | +0.87 |
Relative (%) | -43.9 | -4.2 | +12.2 | -43.2 | -48.1 | -4.2 | -31.7 | -8.4 | +12.9 | -5.7 | +8.0 | |
Steps (reduced) |
110 (110) |
175 (40) |
221 (86) |
256 (121) |
285 (15) |
310 (40) |
331 (61) |
350 (80) |
367 (97) |
382 (112) |
396 (126) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.55 | -5.23 | -5.15 | +2.64 | -4.52 | +5.18 | -1.49 | -3.37 | -0.91 | -5.39 | +4.58 |
Relative (%) | +32.7 | -48.1 | -47.4 | +24.3 | -41.6 | +47.7 | -13.8 | -31.0 | -8.4 | -49.6 | +42.2 | |
Steps (reduced) |
409 (4) |
420 (15) |
431 (26) |
442 (37) |
451 (46) |
461 (56) |
469 (64) |
477 (72) |
485 (80) |
492 (87) |
500 (95) |