67ed7/3
Jump to navigation
Jump to search
Prime factorization
67 (prime)
Step size
21.8936¢
Octave
55\67ed7/3 (1204.15¢)
Twelfth
87\67ed7/3 (1904.74¢)
Consistency limit
4
Distinct consistency limit
4
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 66ed7/3 | 67ed7/3 | 68ed7/3 → |
67 equal divisions of 7/3 (abbreviated 67ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 67 equal parts of about 21.9 ¢ each. Each step represents a frequency ratio of (7/3)1/67, or the 67th root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 21.894 | |
2 | 43.787 | |
3 | 65.681 | 27/26, 28/27 |
4 | 87.574 | 20/19, 21/20 |
5 | 109.468 | 33/31 |
6 | 131.362 | 14/13 |
7 | 153.255 | 12/11 |
8 | 175.149 | 21/19, 31/28 |
9 | 197.042 | |
10 | 218.936 | 17/15 |
11 | 240.83 | 23/20, 31/27 |
12 | 262.723 | 36/31 |
13 | 284.617 | 20/17, 33/28 |
14 | 306.51 | 31/26 |
15 | 328.404 | 23/19, 35/29 |
16 | 350.298 | 11/9 |
17 | 372.191 | 26/21 |
18 | 394.085 | |
19 | 415.978 | 14/11, 33/26 |
20 | 437.872 | 9/7 |
21 | 459.766 | 30/23 |
22 | 481.659 | |
23 | 503.553 | |
24 | 525.446 | 19/14, 23/17 |
25 | 547.34 | |
26 | 569.233 | |
27 | 591.127 | 31/22 |
28 | 613.021 | |
29 | 634.914 | 13/9 |
30 | 656.808 | 19/13 |
31 | 678.701 | 34/23 |
32 | 700.595 | 3/2 |
33 | 722.489 | |
34 | 744.382 | 20/13 |
35 | 766.276 | 14/9 |
36 | 788.169 | 30/19 |
37 | 810.063 | |
38 | 831.957 | 21/13, 34/21 |
39 | 853.85 | 18/11 |
40 | 875.744 | |
41 | 897.637 | |
42 | 919.531 | 17/10 |
43 | 941.425 | 31/18 |
44 | 963.318 | |
45 | 985.212 | 23/13, 30/17 |
46 | 1007.105 | 34/19 |
47 | 1028.999 | |
48 | 1050.893 | 11/6 |
49 | 1072.786 | 13/7 |
50 | 1094.68 | |
51 | 1116.573 | 21/11 |
52 | 1138.467 | 27/14, 29/15 |
53 | 1160.361 | |
54 | 1182.254 | |
55 | 1204.148 | |
56 | 1226.041 | |
57 | 1247.935 | 35/17 |
58 | 1269.829 | |
59 | 1291.722 | 19/9 |
60 | 1313.616 | |
61 | 1335.509 | 13/6 |
62 | 1357.403 | |
63 | 1379.297 | 20/9, 31/14 |
64 | 1401.19 | 9/4 |
65 | 1423.084 | |
66 | 1444.977 | 23/10, 30/13 |
67 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.15 | +2.79 | +8.30 | -5.83 | +6.94 | +2.79 | -9.45 | +5.58 | -1.68 | +8.47 | -10.81 |
Relative (%) | +18.9 | +12.7 | +37.9 | -26.6 | +31.7 | +12.7 | -43.2 | +25.5 | -7.7 | +38.7 | -49.4 | |
Steps (reduced) |
55 (55) |
87 (20) |
110 (43) |
127 (60) |
142 (8) |
154 (20) |
164 (30) |
174 (40) |
182 (48) |
190 (56) |
196 (62) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.87 | +6.94 | -3.04 | -5.30 | -0.79 | +9.72 | +3.69 | +2.47 | +5.58 | -9.28 | +1.34 |
Relative (%) | +17.7 | +31.7 | -13.9 | -24.2 | -3.6 | +44.4 | +16.9 | +11.3 | +25.5 | -42.4 | +6.1 | |
Steps (reduced) |
203 (2) |
209 (8) |
214 (13) |
219 (18) |
224 (23) |
229 (28) |
233 (32) |
237 (36) |
241 (40) |
244 (43) |
248 (47) |