60ed7/3
Jump to navigation
Jump to search
Prime factorization
22 × 3 × 5
Step size
24.4478¢
Octave
49\60ed7/3 (1197.94¢)
(semiconvergent)
Twelfth
78\60ed7/3 (1906.93¢) (→13\10ed7/3)
Consistency limit
8
Distinct consistency limit
6
Special properties
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 59ed7/3 | 60ed7/3 | 61ed7/3 → |
(semiconvergent)
60 equal divisions of 7/3 (abbreviated 60ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 60 equal parts of about 24.4 ¢ each. Each step represents a frequency ratio of (7/3)1/60, or the 60th root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 24.448 | |
2 | 48.896 | 34/33, 35/34 |
3 | 73.344 | 23/22, 24/23, 25/24 |
4 | 97.791 | 18/17, 19/18, 35/33 |
5 | 122.239 | 15/14 |
6 | 146.687 | 12/11, 25/23 |
7 | 171.135 | 21/19, 32/29 |
8 | 195.583 | 19/17, 28/25 |
9 | 220.031 | 17/15, 25/22 |
10 | 244.478 | 15/13, 23/20 |
11 | 268.926 | 7/6 |
12 | 293.374 | 13/11 |
13 | 317.822 | 6/5 |
14 | 342.27 | 28/23 |
15 | 366.718 | 21/17, 26/21 |
16 | 391.166 | |
17 | 415.613 | 14/11, 33/26 |
18 | 440.061 | 31/24 |
19 | 464.509 | 17/13 |
20 | 488.957 | |
21 | 513.405 | 31/23, 35/26 |
22 | 537.853 | 15/11 |
23 | 562.301 | 18/13 |
24 | 586.748 | 7/5 |
25 | 611.196 | 27/19 |
26 | 635.644 | 13/9 |
27 | 660.092 | 19/13, 22/15 |
28 | 684.54 | |
29 | 708.988 | |
30 | 733.435 | 26/17 |
31 | 757.883 | 17/11, 31/20 |
32 | 782.331 | 11/7 |
33 | 806.779 | 35/22 |
34 | 831.227 | 21/13, 34/21 |
35 | 855.675 | 18/11, 23/14 |
36 | 880.123 | 5/3 |
37 | 904.57 | |
38 | 929.018 | 12/7 |
39 | 953.466 | 26/15, 33/19 |
40 | 977.914 | |
41 | 1002.362 | 25/14 |
42 | 1026.81 | 29/16 |
43 | 1051.257 | 11/6 |
44 | 1075.705 | 13/7 |
45 | 1100.153 | 17/9 |
46 | 1124.601 | 23/12 |
47 | 1149.049 | 31/16, 33/17, 35/18 |
48 | 1173.497 | |
49 | 1197.945 | 2/1 |
50 | 1222.392 | |
51 | 1246.84 | 35/17 |
52 | 1271.288 | 25/12 |
53 | 1295.736 | 19/9 |
54 | 1320.184 | 15/7 |
55 | 1344.632 | |
56 | 1369.08 | 11/5 |
57 | 1393.527 | |
58 | 1417.975 | 25/11, 34/15 |
59 | 1442.423 | 23/10 |
60 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.1 | +5.0 | -4.1 | +0.7 | +2.9 | +5.0 | -6.2 | +10.0 | -1.3 | +4.8 | +0.9 |
Relative (%) | -8.4 | +20.4 | -16.8 | +3.0 | +12.0 | +20.4 | -25.2 | +40.7 | -5.4 | +19.7 | +3.5 | |
Steps (reduced) |
49 (49) |
78 (18) |
98 (38) |
114 (54) |
127 (7) |
138 (18) |
147 (27) |
156 (36) |
163 (43) |
170 (50) |
176 (56) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.0 | +2.9 | +5.7 | -8.2 | +9.1 | +7.9 | +12.1 | -3.4 | +10.0 | +2.8 | -0.9 |
Relative (%) | +36.7 | +12.0 | +23.4 | -33.6 | +37.1 | +32.3 | +49.4 | -13.8 | +40.7 | +11.3 | -3.5 | |
Steps (reduced) |
182 (2) |
187 (7) |
192 (12) |
196 (16) |
201 (21) |
205 (25) |
209 (29) |
212 (32) |
216 (36) |
219 (39) |
222 (42) |