39ed9

From Xenharmonic Wiki
Jump to navigation Jump to search
← 37ed9 39ed9 41ed9 →
Prime factorization 3 × 13
Step size 97.5362¢ 
Octave 12\39ed9 (1170.43¢) (→4\13ed9)
Twelfth 20\39ed9 (1950.72¢)
Consistency limit 2
Distinct consistency limit 2

Similar to 97.5cET, 39ed9 divides the double tritave, 9/1, into 39 equal steps of approximately 97.5362c. It stands out as a 9.4/3.5/3.7/3.11/3.13/3 subgroup (and equivalently 9.12.15.21.33.39 subgroup) tuning as of the 2*39 subgroups that came down from the 39edt. This is a third-basis subgroup.⁠ ⁠[idiosyncratic term]

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 97.5
2 195.1 19/17, 29/26
3 292.6 13/11
4 390.1
5 487.7
6 585.2 7/5
7 682.8
8 780.3 11/7
9 877.8 5/3
10 975.4
11 1072.9 13/7
12 1170.4
13 1268 29/14
14 1365.5 11/5
15 1463 7/3
16 1560.6
17 1658.1 13/5
18 1755.7
19 1853.2
20 1950.7
21 2048.3
22 2145.8
23 2243.3 11/3
24 2340.9
25 2438.4
26 2535.9 13/3
27 2633.5
28 2731 29/6
29 2828.5
30 2926.1
31 3023.6
32 3121.2
33 3218.7
34 3316.2
35 3413.8
36 3511.3
37 3608.8
38 3706.4 17/2
39 3803.9

Harmonics

Approximation of harmonics in 39ed9
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -29.6 +48.8 +38.4 +42.2 +19.2 +44.9 +8.8 +0.0 +12.7 +42.7 -10.4
Relative (%) -30.3 +50.0 +39.4 +43.3 +19.7 +46.1 +9.1 +0.0 +13.0 +43.8 -10.6
Steps
(reduced)
12
(12)
20
(20)
25
(25)
29
(29)
32
(32)
35
(35)
37
(37)
39
(0)
41
(2)
43
(4)
44
(5)
Approximation of harmonics in 39ed9
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +46.1 +15.4 -6.5 -20.7 -28.1 -29.6 -25.6 -16.9 -3.8 +13.2 +33.8
Relative (%) +47.3 +15.8 -6.7 -21.3 -28.9 -30.3 -26.3 -17.3 -3.9 +13.5 +34.6
Steps
(reduced)
46
(7)
47
(8)
48
(9)
49
(10)
50
(11)
51
(12)
52
(13)
53
(14)
54
(15)
55
(16)
56
(17)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.