36ed7/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 35ed7/436ed7/437ed7/4 →
Prime factorization 22 × 32
Step size 26.9118¢ 
Octave 45\36ed7/4 (1211.03¢) (→5\4ed7/4)
Twelfth 71\36ed7/4 (1910.74¢)
Consistency limit 3
Distinct consistency limit 3
Special properties

36 equal divisions of 7/4 (abbreviated 36ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 36 equal parts of about 26.9 ¢ each. Each step represents a frequency ratio of (7/4)1/36, or the 36th root of 7/4.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 26.912
2 53.824 29/28
3 80.735 22/21, 23/22
4 107.647
5 134.559 14/13, 27/25
6 161.471 23/21
7 188.383 10/9, 19/17, 28/25, 29/26
8 215.295 26/23
9 242.206
10 269.118
11 296.03 13/11
12 322.942 6/5
13 349.854
14 376.766 26/21
15 403.677 29/23
16 430.589
17 457.501 17/13
18 484.413 29/22
19 511.325
20 538.237
21 565.148 25/18, 29/21
22 592.06
23 618.972
24 645.884
25 672.796
26 699.708 3/2
27 726.619
28 753.531 17/11
29 780.443 11/7
30 807.355
31 834.267 21/13
32 861.179 23/14
33 888.09 5/3
34 915.002 22/13
35 941.914 19/11
36 968.826

Harmonics

Approximation of harmonics in 36ed7/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +11.0 +8.8 -4.8 +12.5 -7.1 -4.8 +6.2 -9.3 -3.4 -6.9 +3.9
Relative (%) +41.0 +32.6 -18.0 +46.5 -26.4 -18.0 +23.0 -34.7 -12.5 -25.6 +14.6
Steps
(reduced)
45
(9)
71
(35)
89
(17)
104
(32)
115
(7)
125
(17)
134
(26)
141
(33)
148
(4)
154
(10)
160
(16)
Approximation of harmonics in 36ed7/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -0.1 +6.2 -5.6 -9.7 -7.0 +1.7 -11.2 +7.7 +3.9 +4.1 +7.9
Relative (%) -0.3 +23.0 -20.8 -36.0 -26.0 +6.3 -41.5 +28.5 +14.6 +15.4 +29.4
Steps
(reduced)
165
(21)
170
(26)
174
(30)
178
(34)
182
(2)
186
(6)
189
(9)
193
(13)
196
(16)
199
(19)
202
(22)