35ed7/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 34ed7/435ed7/436ed7/4 →
Prime factorization 5 × 7
Step size 27.6807¢ 
Octave 43\35ed7/4 (1190.27¢)
Twelfth 69\35ed7/4 (1909.97¢)
Consistency limit 2
Distinct consistency limit 2

35 equal divisions of 7/4 (abbreviated 35ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 35 equal parts of about 27.7 ¢ each. Each step represents a frequency ratio of (7/4)1/35, or the 35th root of 7/4.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 27.681
2 55.361
3 83.042 20/19, 23/22
4 110.723
5 138.404 13/12, 27/25
6 166.084 11/10
7 193.765 19/17
8 221.446
9 249.127 22/19, 23/20
10 276.807 20/17
11 304.488 25/21
12 332.169 17/14, 23/19, 28/23
13 359.85
14 387.53
15 415.211 14/11
16 442.892 9/7, 22/17
17 470.573 17/13
18 498.253
19 525.934 19/14, 23/17
20 553.615
21 581.296 7/5
22 608.976 17/12
23 636.657
24 664.338 19/13, 28/19
25 692.019
26 719.699
27 747.38 17/11, 20/13
28 775.061 11/7
29 802.741 19/12
30 830.422
31 858.103 18/11, 23/14, 28/17
32 885.784 5/3
33 913.464 17/10, 22/13
34 941.145 19/11
35 968.826

Harmonics

Approximation of harmonics in 35ed7/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -9.7 +8.0 +8.2 +9.4 -1.7 +8.2 -1.5 -11.6 -0.3 +0.8 -11.4
Relative (%) -35.1 +29.0 +29.7 +34.1 -6.2 +29.7 -5.4 -42.1 -1.0 +2.9 -41.3
Steps
(reduced)
43
(8)
69
(34)
87
(17)
101
(31)
112
(7)
122
(17)
130
(25)
137
(32)
144
(4)
150
(10)
155
(15)
Approximation of harmonics in 35ed7/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -11.6 -1.5 -10.2 -11.2 -5.5 +6.3 -4.3 -10.0 -11.4 -8.9 -2.8
Relative (%) -41.9 -5.4 -36.9 -40.6 -19.7 +22.8 -15.4 -36.2 -41.3 -32.3 -10.3
Steps
(reduced)
160
(20)
165
(25)
169
(29)
173
(33)
177
(2)
181
(6)
184
(9)
187
(12)
190
(15)
193
(18)
196
(21)