27ed8/3

From Xenharmonic Wiki
Jump to navigation Jump to search
← 26ed8/3 27ed8/3 28ed8/3 →
Prime factorization 33
Step size 62.8906 ¢ 
Octave 19\27ed8/3 (1194.92 ¢)
Twelfth 30\27ed8/3 (1886.72 ¢) (→ 10\9ed8/3)
Consistency limit 6
Distinct consistency limit 6

27 equal divisions of 8/3 (abbreviated 27ed8/3) is a nonoctave tuning system that divides the interval of 8/3 into 27 equal parts of about 62.9 ¢ each. Each step represents a frequency ratio of (8/3)1/27, or the 27th root of 8/3.

Interval table

Steps Cents Approximate ratios
0 0 1/1
1 62.9 24/23, 25/24
2 125.8 14/13
3 188.7 10/9, 19/17
4 251.6 22/19, 23/20
5 314.5 6/5
6 377.3 5/4, 26/21
7 440.2 22/17
8 503.1 4/3
9 566 25/18
10 628.9 23/16
11 691.8 3/2
12 754.7 17/11
13 817.6 8/5
14 880.5 5/3
15 943.4 19/11
16 1006.2 9/5, 16/9
17 1069.1 13/7
18 1132 23/12
19 1194.9 2/1
20 1257.8
21 1320.7
22 1383.6 20/9
23 1446.5 23/10
24 1509.4 12/5
25 1572.3
26 1635.2 23/9
27 1698 8/3

Harmonics

Approximation of harmonics in 27ed8/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -5.1 -15.2 -10.2 -19.1 -20.3 +27.3 -15.2 -30.5 -24.2 -0.5 -25.4
Relative (%) -8.1 -24.2 -16.2 -30.4 -32.3 +43.4 -24.2 -48.5 -38.5 -0.9 -40.4
Steps
(reduced)
19
(19)
30
(3)
38
(11)
44
(17)
49
(22)
54
(0)
57
(3)
60
(6)
63
(9)
66
(12)
68
(14)