2477edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 2476edo 2477edo 2478edo →
Prime factorization 2477 (prime)
Step size 0.484457¢ 
Fifth 1449\2477 (701.978¢)
Semitones (A1:m2) 235:186 (113.8¢ : 90.11¢)
Consistency limit 5
Distinct consistency limit 5

2477 equal divisions of the octave (abbreviated 2477edo or 2477ed2), also called 2477-tone equal temperament (2477tet) or 2477 equal temperament (2477et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 2477 equal parts of about 0.484 ¢ each. Each step represents a frequency ratio of 21/2477, or the 2477th root of 2.

Theory

2477edo is consistent to the 5-odd-limit. It can be used in the 2.3.5.11.13.23.29 subgroup, tempering out 4225/4224, 7425/7424, 256000/255879, 4785/4784, 1917625/1916928 and 56953125/56909567. Using the 2.3.7.13.23.31 subgroup, it tempers out 4992/4991. Using the 2.3.7.11.13.19.23.41 subgroup, it tempers out 10374/10373.

Prime harmonics

Approximation of prime harmonics in 2477edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 +0.023 -0.201 +0.088 -0.006 +0.005 +0.172 -0.056 +0.066 -0.106 +0.221
Relative (%) +0.0 +4.8 -41.6 +18.2 -1.2 +1.1 +35.5 -11.6 +13.7 -21.9 +45.6
Steps
(reduced)
2477
(0)
3926
(1449)
5751
(797)
6954
(2000)
8569
(1138)
9166
(1735)
10125
(217)
10522
(614)
11205
(1297)
12033
(2125)
12272
(2364)

Subsets and supersets

2477edo is the 367th prime edo. 4954edo, which doubles it, gives a good correction to the harmonic 7.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [3926 -2477 [2477 3926]] -0.0073 0.0073 1.51
2.3.5 [-97 7 37, [93 -66 5 [2477 3926 5751]] +0.0240 0.0448 9.25