1609edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 1608edo 1609edo 1610edo →
Prime factorization 1609 (prime)
Step size 0.745805 ¢ 
Fifth 941\1609 (701.802 ¢)
Semitones (A1:m2) 151:122 (112.6 ¢ : 90.99 ¢)
Consistency limit 15
Distinct consistency limit 15

1609 equal divisions of the octave (abbreviated 1609edo or 1609ed2), also called 1609-tone equal temperament (1609tet) or 1609 equal temperament (1609et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1609 equal parts of about 0.746 ¢ each. Each step represents a frequency ratio of 21/1609, or the 1609th root of 2.

Theory

1609edo is consistent to the 15-odd-limit, tempering out 67392/67375, 160083/160000, 50193/50176, 91125/91091 and 557568/557375 in the 13-limit. It is a strong 2.5.7.13.19 subgroup tuning, tempering out 401408/401375, 739375/739328, 479199083125/479174066176 and 32005131723019/32000000000000. Using the 2.5.7.11.13.19.43 subgroup it tempers out 5720/5719. The equal temperament supports exodia.

Prime harmonics

Approximation of prime harmonics in 1609edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.153 +0.013 -0.025 -0.168 -0.006 +0.203 +0.063 -0.307 -0.367 -0.225
Relative (%) +0.0 -20.5 +1.8 -3.4 -22.5 -0.8 +27.2 +8.5 -41.1 -49.1 -30.2
Steps
(reduced)
1609
(0)
2550
(941)
3736
(518)
4517
(1299)
5566
(739)
5954
(1127)
6577
(141)
6835
(399)
7278
(842)
7816
(1380)
7971
(1535)

Subsets and supersets

1609edo is the 254th prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-2550 1609 [1609 2550]] 0.0482 0.0482 6.46
2.3.5 [-68 18 17, [-38 65 -28 [1609 2550 3736]] 0.0302 0.0468 6.28
2.3.5.7 2460375/2458624, 1640558367/1638400000, [29 14 -16 -5 [1609 2550 3736 4517]] 0.0249 0.0416 5.58
2.3.5.7.11 160083/160000, 1240029/1239040, 151263/151250, 262766592/262609375 [1609 2550 3736 4517 5566]] 0.0297 0.0384 5.15
2.3.5.7.11.13 67392/67375, 160083/160000, 50193/50176, 91125/91091, 557568/557375 [1609 2550 3736 4517 5566 5954]] 0.0250 0.0365 4.89

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 150\1609 111.871 16/15 Vavoom

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct