141ed4
Jump to navigation
Jump to search
Prime factorization
3 × 47
Step size
17.0213¢
Octave
71\141ed4 (1208.51¢)
Twelfth
112\141ed4 (1906.38¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 139ed4 | 141ed4 | 143ed4 → |
141 equal divisions of the 4th harmonic (abbreviated 141ed4) is a nonoctave tuning system that divides the interval of 4/1 into 141 equal parts of about 17 ¢ each. Each step represents a frequency ratio of 41/141, or the 141st root of 4.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 17 | |
2 | 34 | |
3 | 51.1 | 34/33, 35/34 |
4 | 68.1 | 26/25, 51/49 |
5 | 85.1 | 41/39 |
6 | 102.1 | 35/33 |
7 | 119.1 | 15/14 |
8 | 136.2 | |
9 | 153.2 | 47/43 |
10 | 170.2 | 43/39 |
11 | 187.2 | 39/35 |
12 | 204.3 | |
13 | 221.3 | 25/22 |
14 | 238.3 | 39/34 |
15 | 255.3 | |
16 | 272.3 | 41/35, 55/47 |
17 | 289.4 | 13/11 |
18 | 306.4 | 37/31 |
19 | 323.4 | 41/34, 47/39 |
20 | 340.4 | |
21 | 357.4 | 43/35 |
22 | 374.5 | 41/33 |
23 | 391.5 | |
24 | 408.5 | |
25 | 425.5 | 55/43 |
26 | 442.6 | |
27 | 459.6 | 43/33 |
28 | 476.6 | |
29 | 493.6 | |
30 | 510.6 | 47/35, 51/38 |
31 | 527.7 | |
32 | 544.7 | |
33 | 561.7 | 47/34 |
34 | 578.7 | |
35 | 595.7 | 55/39 |
36 | 612.8 | 47/33 |
37 | 629.8 | |
38 | 646.8 | |
39 | 663.8 | 22/15 |
40 | 680.9 | |
41 | 697.9 | |
42 | 714.9 | |
43 | 731.9 | 29/19 |
44 | 748.9 | |
45 | 766 | 14/9 |
46 | 783 | 11/7 |
47 | 800 | |
48 | 817 | |
49 | 834 | 34/21, 55/34 |
50 | 851.1 | |
51 | 868.1 | 38/23 |
52 | 885.1 | 5/3 |
53 | 902.1 | |
54 | 919.1 | |
55 | 936.2 | |
56 | 953.2 | 26/15 |
57 | 970.2 | |
58 | 987.2 | 23/13 |
59 | 1004.3 | 25/14 |
60 | 1021.3 | |
61 | 1038.3 | |
62 | 1055.3 | 46/25 |
63 | 1072.3 | 13/7 |
64 | 1089.4 | |
65 | 1106.4 | |
66 | 1123.4 | |
67 | 1140.4 | |
68 | 1157.4 | 41/21 |
69 | 1174.5 | |
70 | 1191.5 | |
71 | 1208.5 | |
72 | 1225.5 | |
73 | 1242.6 | |
74 | 1259.6 | |
75 | 1276.6 | 23/11 |
76 | 1293.6 | |
77 | 1310.6 | 49/23 |
78 | 1327.7 | |
79 | 1344.7 | |
80 | 1361.7 | |
81 | 1378.7 | 51/23 |
82 | 1395.7 | 47/21 |
83 | 1412.8 | |
84 | 1429.8 | |
85 | 1446.8 | |
86 | 1463.8 | |
87 | 1480.9 | |
88 | 1497.9 | |
89 | 1514.9 | |
90 | 1531.9 | |
91 | 1548.9 | 22/9 |
92 | 1566 | |
93 | 1583 | |
94 | 1600 | |
95 | 1617 | |
96 | 1634 | |
97 | 1651.1 | |
98 | 1668.1 | 55/21 |
99 | 1685.1 | |
100 | 1702.1 | |
101 | 1719.1 | 27/10 |
102 | 1736.2 | |
103 | 1753.2 | |
104 | 1770.2 | 25/9 |
105 | 1787.2 | |
106 | 1804.3 | |
107 | 1821.3 | |
108 | 1838.3 | |
109 | 1855.3 | |
110 | 1872.3 | |
111 | 1889.4 | |
112 | 1906.4 | |
113 | 1923.4 | |
114 | 1940.4 | 46/15 |
115 | 1957.4 | |
116 | 1974.5 | |
117 | 1991.5 | |
118 | 2008.5 | |
119 | 2025.5 | |
120 | 2042.6 | |
121 | 2059.6 | 23/7 |
122 | 2076.6 | |
123 | 2093.6 | |
124 | 2110.6 | |
125 | 2127.7 | |
126 | 2144.7 | 38/11 |
127 | 2161.7 | |
128 | 2178.7 | |
129 | 2195.7 | |
130 | 2212.8 | |
131 | 2229.8 | |
132 | 2246.8 | |
133 | 2263.8 | |
134 | 2280.9 | |
135 | 2297.9 | 49/13 |
136 | 2314.9 | |
137 | 2331.9 | |
138 | 2348.9 | |
139 | 2366 | 51/13 |
140 | 2383 | |
141 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.51 | +4.43 | +0.00 | +5.18 | -4.08 | +1.39 | +8.51 | -8.17 | -3.33 | +1.87 | +4.43 |
Relative (%) | +50.0 | +26.0 | +0.0 | +30.4 | -24.0 | +8.1 | +50.0 | -48.0 | -19.6 | +11.0 | +26.0 | |
Steps (reduced) |
71 (71) |
112 (112) |
141 (0) |
164 (23) |
182 (41) |
198 (57) |
212 (71) |
223 (82) |
234 (93) |
244 (103) |
253 (112) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.03 | -7.12 | -7.42 | +0.00 | -2.83 | +0.35 | -8.15 | +5.18 | +5.81 | -6.64 | +1.51 |
Relative (%) | +11.9 | -41.9 | -43.6 | +0.0 | -16.6 | +2.0 | -47.9 | +30.4 | +34.2 | -39.0 | +8.9 | |
Steps (reduced) |
261 (120) |
268 (127) |
275 (134) |
282 (0) |
288 (6) |
294 (12) |
299 (17) |
305 (23) |
310 (28) |
314 (32) |
319 (37) |