139ed4
Jump to navigation
Jump to search
Prime factorization
139 (prime)
Step size
17.2662¢
Octave
70\139ed4 (1208.63¢)
Twelfth
110\139ed4 (1899.28¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 137ed4 | 139ed4 | 141ed4 → |
139 equal divisions of the 4th harmonic (abbreviated 139ed4) is a nonoctave tuning system that divides the interval of 4/1 into 139 equal parts of about 17.3 ¢ each. Each step represents a frequency ratio of 41/139, or the 139th root of 4.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 17.3 | |
2 | 34.5 | 50/49, 51/50 |
3 | 51.8 | |
4 | 69.1 | 51/49 |
5 | 86.3 | 41/39 |
6 | 103.6 | |
7 | 120.9 | |
8 | 138.1 | |
9 | 155.4 | 47/43 |
10 | 172.7 | 21/19 |
11 | 189.9 | 29/26 |
12 | 207.2 | |
13 | 224.5 | 49/43 |
14 | 241.7 | 54/47 |
15 | 259 | 43/37 |
16 | 276.3 | 27/23, 34/29 |
17 | 293.5 | |
18 | 310.8 | |
19 | 328.1 | |
20 | 345.3 | |
21 | 362.6 | 37/30 |
22 | 379.9 | |
23 | 397.1 | 39/31 |
24 | 414.4 | 47/37 |
25 | 431.7 | 50/39 |
26 | 448.9 | 35/27 |
27 | 466.2 | |
28 | 483.5 | 41/31 |
29 | 500.7 | |
30 | 518 | 31/23 |
31 | 535.3 | |
32 | 552.5 | |
33 | 569.8 | |
34 | 587.1 | |
35 | 604.3 | |
36 | 621.6 | 43/30 |
37 | 638.8 | |
38 | 656.1 | 19/13, 54/37 |
39 | 673.4 | 31/21 |
40 | 690.6 | |
41 | 707.9 | |
42 | 725.2 | 35/23 |
43 | 742.4 | |
44 | 759.7 | |
45 | 777 | 47/30 |
46 | 794.2 | 49/31 |
47 | 811.5 | |
48 | 828.8 | 21/13, 50/31 |
49 | 846 | 31/19 |
50 | 863.3 | 51/31 |
51 | 880.6 | |
52 | 897.8 | |
53 | 915.1 | 39/23 |
54 | 932.4 | |
55 | 949.6 | |
56 | 966.9 | |
57 | 984.2 | 30/17 |
58 | 1001.4 | 41/23 |
59 | 1018.7 | 9/5 |
60 | 1036 | |
61 | 1053.2 | |
62 | 1070.5 | 13/7 |
63 | 1087.8 | |
64 | 1105 | |
65 | 1122.3 | |
66 | 1139.6 | |
67 | 1156.8 | 41/21 |
68 | 1174.1 | |
69 | 1191.4 | |
70 | 1208.6 | |
71 | 1225.9 | |
72 | 1243.2 | |
73 | 1260.4 | 29/14 |
74 | 1277.7 | 23/11 |
75 | 1295 | 19/9 |
76 | 1312.2 | |
77 | 1329.5 | |
78 | 1346.8 | 37/17 |
79 | 1364 | 11/5 |
80 | 1381.3 | |
81 | 1398.6 | |
82 | 1415.8 | |
83 | 1433.1 | |
84 | 1450.4 | |
85 | 1467.6 | 7/3 |
86 | 1484.9 | |
87 | 1502.2 | 50/21 |
88 | 1519.4 | |
89 | 1536.7 | 17/7 |
90 | 1554 | 27/11 |
91 | 1571.2 | |
92 | 1588.5 | |
93 | 1605.8 | 43/17 |
94 | 1623 | 23/9 |
95 | 1640.3 | 49/19 |
96 | 1657.6 | |
97 | 1674.8 | 50/19 |
98 | 1692.1 | |
99 | 1709.4 | 51/19 |
100 | 1726.6 | |
101 | 1743.9 | |
102 | 1761.2 | 47/17 |
103 | 1778.4 | |
104 | 1795.7 | |
105 | 1812.9 | |
106 | 1830.2 | |
107 | 1847.5 | |
108 | 1864.7 | |
109 | 1882 | |
110 | 1899.3 | |
111 | 1916.5 | |
112 | 1933.8 | |
113 | 1951.1 | |
114 | 1968.3 | |
115 | 1985.6 | |
116 | 2002.9 | 35/11 |
117 | 2020.1 | |
118 | 2037.4 | |
119 | 2054.7 | |
120 | 2071.9 | 43/13 |
121 | 2089.2 | |
122 | 2106.5 | |
123 | 2123.7 | |
124 | 2141 | 31/9 |
125 | 2158.3 | |
126 | 2175.5 | |
127 | 2192.8 | 39/11 |
128 | 2210.1 | |
129 | 2227.3 | |
130 | 2244.6 | |
131 | 2261.9 | |
132 | 2279.1 | 41/11 |
133 | 2296.4 | 49/13 |
134 | 2313.7 | |
135 | 2330.9 | 50/13 |
136 | 2348.2 | |
137 | 2365.5 | 51/13 |
138 | 2382.7 | |
139 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.63 | -2.67 | +0.00 | -6.46 | +5.96 | -1.92 | +8.63 | -5.35 | +2.18 | -7.43 | -2.67 |
Relative (%) | +50.0 | -15.5 | +0.0 | -37.4 | +34.5 | -11.1 | +50.0 | -31.0 | +12.6 | -43.0 | -15.5 | |
Steps (reduced) |
70 (70) |
110 (110) |
139 (0) |
161 (22) |
180 (41) |
195 (56) |
209 (70) |
220 (81) |
231 (92) |
240 (101) |
249 (110) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.12 | +6.71 | +8.13 | +0.00 | -1.36 | +3.28 | -3.99 | -6.46 | -4.59 | +1.20 | -6.69 |
Relative (%) | -18.1 | +38.9 | +47.1 | +0.0 | -7.9 | +19.0 | -23.1 | -37.4 | -26.6 | +7.0 | -38.8 | |
Steps (reduced) |
257 (118) |
265 (126) |
272 (133) |
278 (0) |
284 (6) |
290 (12) |
295 (17) |
300 (22) |
305 (27) |
310 (32) |
314 (36) |