137ed4
Jump to navigation
Jump to search
Prime factorization
137 (prime)
Step size
17.5182¢
Octave
69\137ed4 (1208.76¢)
Twelfth
109\137ed4 (1909.49¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 135ed4 | 137ed4 | 139ed4 → |
137 equal divisions of the 4th harmonic (abbreviated 137ed4) is a nonoctave tuning system that divides the interval of 4/1 into 137 equal parts of about 17.5 ¢ each. Each step represents a frequency ratio of 41/137, or the 137th root of 4.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 17.5 | |
2 | 35 | 51/50, 52/51 |
3 | 52.6 | 34/33 |
4 | 70.1 | |
5 | 87.6 | 41/39 |
6 | 105.1 | |
7 | 122.6 | |
8 | 140.1 | |
9 | 157.7 | 23/21 |
10 | 175.2 | |
11 | 192.7 | 19/17 |
12 | 210.2 | 35/31 |
13 | 227.7 | |
14 | 245.3 | 38/33 |
15 | 262.8 | 50/43 |
16 | 280.3 | |
17 | 297.8 | |
18 | 315.3 | |
19 | 332.8 | |
20 | 350.4 | |
21 | 367.9 | |
22 | 385.4 | |
23 | 402.9 | 29/23 |
24 | 420.4 | 37/29 |
25 | 438 | |
26 | 455.5 | |
27 | 473 | |
28 | 490.5 | |
29 | 508 | 51/38 |
30 | 525.5 | |
31 | 543.1 | 26/19 |
32 | 560.6 | |
33 | 578.1 | |
34 | 595.6 | |
35 | 613.1 | |
36 | 630.7 | |
37 | 648.2 | |
38 | 665.7 | |
39 | 683.2 | 43/29 |
40 | 700.7 | 3/2 |
41 | 718.2 | 50/33 |
42 | 735.8 | 26/17 |
43 | 753.3 | 17/11 |
44 | 770.8 | 39/25 |
45 | 788.3 | 41/26, 52/33 |
46 | 805.8 | |
47 | 823.4 | 37/23 |
48 | 840.9 | |
49 | 858.4 | 23/14 |
50 | 875.9 | |
51 | 893.4 | |
52 | 910.9 | |
53 | 928.5 | |
54 | 946 | 19/11 |
55 | 963.5 | |
56 | 981 | 37/21 |
57 | 998.5 | |
58 | 1016.1 | |
59 | 1033.6 | |
60 | 1051.1 | |
61 | 1068.6 | |
62 | 1086.1 | |
63 | 1103.6 | |
64 | 1121.2 | 21/11 |
65 | 1138.7 | |
66 | 1156.2 | |
67 | 1173.7 | |
68 | 1191.2 | |
69 | 1208.8 | |
70 | 1226.3 | |
71 | 1243.8 | 39/19 |
72 | 1261.3 | 29/14 |
73 | 1278.8 | |
74 | 1296.4 | |
75 | 1313.9 | |
76 | 1331.4 | 41/19 |
77 | 1348.9 | |
78 | 1366.4 | 11/5 |
79 | 1383.9 | 20/9 |
80 | 1401.5 | |
81 | 1419 | |
82 | 1436.5 | 39/17 |
83 | 1454 | 51/22 |
84 | 1471.5 | |
85 | 1489.1 | 26/11 |
86 | 1506.6 | |
87 | 1524.1 | 41/17 |
88 | 1541.6 | |
89 | 1559.1 | |
90 | 1576.6 | |
91 | 1594.2 | |
92 | 1611.7 | |
93 | 1629.2 | |
94 | 1646.7 | |
95 | 1664.2 | |
96 | 1681.8 | 37/14 |
97 | 1699.3 | |
98 | 1716.8 | |
99 | 1734.3 | |
100 | 1751.8 | |
101 | 1769.3 | |
102 | 1786.9 | |
103 | 1804.4 | |
104 | 1821.9 | 43/15 |
105 | 1839.4 | |
106 | 1856.9 | |
107 | 1874.5 | |
108 | 1892 | |
109 | 1909.5 | |
110 | 1927 | |
111 | 1944.5 | |
112 | 1962 | |
113 | 1979.6 | |
114 | 1997.1 | |
115 | 2014.6 | |
116 | 2032.1 | |
117 | 2049.6 | |
118 | 2067.2 | 33/10 |
119 | 2084.7 | 10/3 |
120 | 2102.2 | |
121 | 2119.7 | 17/5 |
122 | 2137.2 | |
123 | 2154.7 | |
124 | 2172.3 | |
125 | 2189.8 | 39/11 |
126 | 2207.3 | |
127 | 2224.8 | 47/13 |
128 | 2242.3 | |
129 | 2259.9 | |
130 | 2277.4 | 41/11 |
131 | 2294.9 | |
132 | 2312.4 | 19/5 |
133 | 2329.9 | |
134 | 2347.4 | |
135 | 2365 | |
136 | 2382.5 | |
137 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.76 | +7.53 | +0.00 | -0.91 | -1.23 | -5.32 | +8.76 | -2.45 | +7.85 | +0.51 | +7.53 |
Relative (%) | +50.0 | +43.0 | +0.0 | -5.2 | -7.0 | -30.4 | +50.0 | -14.0 | +44.8 | +2.9 | +43.0 | |
Steps (reduced) |
69 (69) |
109 (109) |
137 (0) |
159 (22) |
177 (40) |
192 (55) |
206 (69) |
217 (80) |
228 (91) |
237 (100) |
246 (109) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.41 | +3.44 | +6.62 | +0.00 | +0.15 | +6.31 | +0.30 | -0.91 | +2.21 | -8.25 | +2.38 |
Relative (%) | -48.0 | +19.6 | +37.8 | +0.0 | +0.9 | +36.0 | +1.7 | -5.2 | +12.6 | -47.1 | +13.6 | |
Steps (reduced) |
253 (116) |
261 (124) |
268 (131) |
274 (0) |
280 (6) |
286 (12) |
291 (17) |
296 (22) |
301 (27) |
305 (31) |
310 (36) |