137ed4
Jump to navigation
Jump to search
Prime factorization
137 (prime)
Step size
17.5182¢
Octave
69\137ed4 (1208.76¢)
Twelfth
109\137ed4 (1909.49¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 135ed4 | 137ed4 | 139ed4 → |
137 equal divisions of the 4th harmonic (abbreviated 137ed4) is a nonoctave tuning system that divides the interval of 4/1 into 137 equal parts of about 17.5 ¢ each. Each step represents a frequency ratio of 41/137, or the 137th root of 4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 17.518 | |
2 | 35.036 | 51/50, 52/51 |
3 | 52.555 | 34/33 |
4 | 70.073 | |
5 | 87.591 | 41/39 |
6 | 105.109 | |
7 | 122.628 | |
8 | 140.146 | |
9 | 157.664 | 23/21 |
10 | 175.182 | |
11 | 192.701 | 19/17 |
12 | 210.219 | 35/31 |
13 | 227.737 | |
14 | 245.255 | 38/33 |
15 | 262.774 | 50/43 |
16 | 280.292 | |
17 | 297.81 | |
18 | 315.328 | |
19 | 332.847 | |
20 | 350.365 | |
21 | 367.883 | |
22 | 385.401 | |
23 | 402.92 | 29/23 |
24 | 420.438 | 37/29 |
25 | 437.956 | |
26 | 455.474 | |
27 | 472.993 | |
28 | 490.511 | |
29 | 508.029 | 51/38 |
30 | 525.547 | |
31 | 543.066 | 26/19 |
32 | 560.584 | |
33 | 578.102 | |
34 | 595.62 | |
35 | 613.139 | |
36 | 630.657 | |
37 | 648.175 | |
38 | 665.693 | |
39 | 683.212 | 43/29 |
40 | 700.73 | 3/2 |
41 | 718.248 | 50/33 |
42 | 735.766 | 26/17 |
43 | 753.285 | 17/11 |
44 | 770.803 | 39/25 |
45 | 788.321 | 41/26, 52/33 |
46 | 805.839 | |
47 | 823.358 | 37/23 |
48 | 840.876 | |
49 | 858.394 | 23/14 |
50 | 875.912 | |
51 | 893.431 | |
52 | 910.949 | |
53 | 928.467 | |
54 | 945.985 | 19/11 |
55 | 963.504 | |
56 | 981.022 | 37/21 |
57 | 998.54 | |
58 | 1016.058 | |
59 | 1033.577 | |
60 | 1051.095 | |
61 | 1068.613 | |
62 | 1086.131 | |
63 | 1103.65 | |
64 | 1121.168 | 21/11 |
65 | 1138.686 | |
66 | 1156.204 | |
67 | 1173.723 | |
68 | 1191.241 | |
69 | 1208.759 | |
70 | 1226.277 | |
71 | 1243.796 | 39/19 |
72 | 1261.314 | 29/14 |
73 | 1278.832 | |
74 | 1296.35 | |
75 | 1313.869 | |
76 | 1331.387 | 41/19 |
77 | 1348.905 | |
78 | 1366.423 | 11/5 |
79 | 1383.942 | 20/9 |
80 | 1401.46 | |
81 | 1418.978 | |
82 | 1436.496 | 39/17 |
83 | 1454.015 | 51/22 |
84 | 1471.533 | |
85 | 1489.051 | 26/11 |
86 | 1506.569 | |
87 | 1524.088 | 41/17 |
88 | 1541.606 | |
89 | 1559.124 | |
90 | 1576.642 | |
91 | 1594.161 | |
92 | 1611.679 | |
93 | 1629.197 | |
94 | 1646.715 | |
95 | 1664.234 | |
96 | 1681.752 | 37/14 |
97 | 1699.27 | |
98 | 1716.788 | |
99 | 1734.307 | |
100 | 1751.825 | |
101 | 1769.343 | |
102 | 1786.861 | |
103 | 1804.38 | |
104 | 1821.898 | 43/15 |
105 | 1839.416 | |
106 | 1856.934 | |
107 | 1874.453 | |
108 | 1891.971 | |
109 | 1909.489 | |
110 | 1927.007 | |
111 | 1944.526 | |
112 | 1962.044 | |
113 | 1979.562 | |
114 | 1997.08 | |
115 | 2014.599 | |
116 | 2032.117 | |
117 | 2049.635 | |
118 | 2067.153 | 33/10 |
119 | 2084.672 | 10/3 |
120 | 2102.19 | |
121 | 2119.708 | 17/5 |
122 | 2137.226 | |
123 | 2154.745 | |
124 | 2172.263 | |
125 | 2189.781 | 39/11 |
126 | 2207.299 | |
127 | 2224.818 | 47/13 |
128 | 2242.336 | |
129 | 2259.854 | |
130 | 2277.372 | 41/11 |
131 | 2294.891 | |
132 | 2312.409 | 19/5 |
133 | 2329.927 | |
134 | 2347.445 | |
135 | 2364.964 | |
136 | 2382.482 | |
137 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.76 | +7.53 | +0.00 | -0.91 | -1.23 | -5.32 | +8.76 | -2.45 | +7.85 | +0.51 | +7.53 |
Relative (%) | +50.0 | +43.0 | +0.0 | -5.2 | -7.0 | -30.4 | +50.0 | -14.0 | +44.8 | +2.9 | +43.0 | |
Steps (reduced) |
69 (69) |
109 (109) |
137 (0) |
159 (22) |
177 (40) |
192 (55) |
206 (69) |
217 (80) |
228 (91) |
237 (100) |
246 (109) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.41 | +3.44 | +6.62 | +0.00 | +0.15 | +6.31 | +0.30 | -0.91 | +2.21 | -8.25 | +2.38 |
Relative (%) | -48.0 | +19.6 | +37.8 | +0.0 | +0.9 | +36.0 | +1.7 | -5.2 | +12.6 | -47.1 | +13.6 | |
Steps (reduced) |
253 (116) |
261 (124) |
268 (131) |
274 (0) |
280 (6) |
286 (12) |
291 (17) |
296 (22) |
301 (27) |
305 (31) |
310 (36) |