3L 2s (3/2-equivalent)
↖ 2L 1s⟨3/2⟩ | ↑ 3L 1s⟨3/2⟩ | 4L 1s⟨3/2⟩ ↗ |
← 2L 2s⟨3/2⟩ | 3L 2s (3/2-equivalent) | 4L 2s⟨3/2⟩ → |
↙ 2L 3s⟨3/2⟩ | ↓ 3L 3s⟨3/2⟩ | 4L 3s⟨3/2⟩ ↘ |
┌╥╥┬╥┬┐ │║║│║││ │││││││ └┴┴┴┴┴┘
sLsLL
3L 2s<3/2> (sometimes called uranian), is a fifth-repeating MOS scale. The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating 3L 2s. The name of the period interval is called the sesquitave (by analogy to the tritave). It is a warped diatonic scale because it has one extra small step compared to diatonic (3L 1s (fifth-equivalent)): for example, the Ionian diatonic fifth LLsL can be distorted to the Oberonan mode LsLLs.
The generator range is 234 to 280.8 cents, placing it in between the diatonic major second and the diatonic minor third, usually representing a subminor third of some type (like 7/6). The bright (chroma-positive) generator is, however, its fifth complement (468 to 421.2 cents).
Because uranian is a fifth-repeating scale, each tone has a 3/2 perfect fifth above it. The scale has three major chords and two minor chords, all voiced so that the third of the triad is an octave higher, a tenth. Uranian also has two harmonic 7th chords.
Basic uranian is in 8edf, which is a very good fifth-based equal tuning similar to 88cET.
Notation
There are 2 main ways to notate the uranian scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 5 naturals (A-E). Given that 1-7/4-5/2 is fifth-equivalent to a tone cluster of 1-10/9-7/6, it may be more convenient to notate uranian scales as repeating at the double sesquitave (major ninth), however it does make navigating the genchain harder. This way, 7/4 is its own pitch class, distinct from 7/6. Notating this way produces a major ninth which is the Aeolian mode of Annapolis[6L 4s]. Since there are exactly 10 naturals in double sesquitave notation, Greek numerals 1-10 may be used.
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Uranian | Annapolis | 18edf | 13edf | 21edf | 8edf | 19edf | 11edf | 14edf |
A# | Α# | 1\18
38.9975 |
1\13
53.9965 |
2\21
66.8529 |
1\8
87.7444 |
3\19
110.835 |
2\11
[[1]] |
3\14
[[2]] |
Bb | Βb | 3\18
[[3]] |
2\13
[[4]] |
3\21
[[5]] |
2\19
73.89 |
1\11
63.814 |
1\14
50.1396 | |
B | Β | 4\18
155.99 |
3\13
[[6]] |
5\21
[[7]] |
2\8
175.48875 |
5\19
184.725 |
3\11
[[8]] |
4\14
[[9]] |
B# | Β# | 5\18
[[10]] |
4\13
[[11]] |
7\21
233.985 |
3\8
[[12]] |
8\19
295.56 |
5\11
319.07045 |
7\14
[[13]] |
Cb | Γb | 6\18
233.985 |
6\21
[[14]] |
2\8
175.48875 |
4\19
147.78 |
2\11
[[15]] |
2\14
[[16]] | |
C | Γ | 7\18
[[17]] |
5\13
[[18]] |
8\21
[[19]] |
3\8
[[20]] |
7\19
258.615 |
4\11
[[21]] |
5\14
[[22]] |
C# | Γ# | 8\18
311.98 |
6\13
[[23]] |
10\21
[[24]] |
4\8
[[25]] |
9\19
332.505 |
6\11
382.88455 |
8\14
[[26]] |
Db | Δb | 10\18
389.975 |
7\13
[[27]] |
11\21
[[28]] |
10\19
369.45 |
5\11
319.07045 |
6\14
[[29]] | |
D | Δ | 11\18
[[30]] |
8\13
[[31]] |
13\21
[[32]] |
5\8
[[33]] |
12\19
470.285 |
7\11
[[34]] |
9\14
[[35]] |
D# | Δ# | 12\18
467.97 |
9\13
[[36]] |
15\21
[[37]] |
6\8
526.46625 |
15\19
554.175 |
9\11
[[38]] |
12\14
[[39]] |
Eb | Εb | 14\18
545.965 |
10\13
[[40]] |
16\21
[[41]] |
14\19
516.23 |
8\11
[[42]] |
10\14
[[43]] | |
E | Ε | 15\18
[[44]] |
11\13
[[45]] |
18\21
[[46]] |
7\8
[[47]] |
17\19
628.065 |
10\11
[[48]] |
13\14
[[49]] |
E# | Ε# | 16\18
622.96 |
12\13
[[50]] |
20\21
[[51]] |
8\8
701.955 |
20\19
738.9 |
12\11
765.769 |
16\14
[[52]] |
Ab | Ϛb/Ϝb | 17\18
[[53]] |
19\21
[[54]] |
7\8
[[55]] |
16\19
591.12 |
9\11
[[56]] |
11\14
551.636 | |
A | Ϛ/Ϝ | 701.955 | ||||||
A# | Ϛ#/Ϝ# | 19\18
[[57]] |
14\13
[[58]] |
23\21
[[59]] |
9\8
[[60]] |
22\19
812.79 |
13\11
[[61]] |
17\14
[[62]] |
Bb | Ζb | 21\18
[[63]] |
15\13
[[64]] |
24\21
[[65]] |
21\19
775.845 |
12\11
765.769 |
15\14
[[66]] | |
B | Ζ | 22\18
857.945 |
16\13
[[67]] |
26\21
[[68]] |
10\8
877.44375 |
24\19
886.68 |
14\11
[[69]] |
18\14
[[70]] |
B# | Ζ# | 23\18
[[71]] |
17\13
[[72]] |
28\21
[[73]] |
11\8
[[74]] |
27\19
997.515 |
16\11
1021.02545 |
21\14
1052.9235 |
Cb | Ηb | 24\18
935.94 |
27\21
[[75]] |
10\8
877.44375 |
23\19
849.753 |
13\11
[[76]] |
16\14
[[77]] | |
C | Η | 25\18
[[78]] |
18\13
[[79]] |
29\21
[[80]] |
11\8
[[81]] |
26\19
960.57 |
15\11
[[82]] |
19\14
[[83]] |
C# | Η# | 26\18
1012.935 |
19\13
1025.9342 |
31\21
1036.2193 |
12\8
1052.9235 |
29\19
1071.405 |
17\11
1084.83955 |
22\14
1103.0721 |
Db | Θb | 28\18
1091.93 |
20\13
1079.9308 |
32\21
1069.9157 |
28\19
1034.46 |
16\11
1021.02545 |
20\14
1002.7929 | |
D | Θ | 29\18
1130.9275 |
21\13
1133.9273 |
34\21
1136.4986 |
13\8
1140.7769 |
31\19
1145.295 |
18\11
1148.6536 |
23\14
1153.2118 |
D# | Θ# | 30\18
1169.925 |
22\13
1187.9238 |
36\21
1203.3514 |
14\8
1228.42125 |
34\19
1256.13 |
20\11
1276.2818 |
26\14
1303.6307 |
Eb | Ιb | 32\18
1247.92 |
23\13
1241.9203 |
37\21
1236.7779 |
33\19
1218.285 |
19\11
1212.5678 |
24\14
1203.3514 | |
E | Ι | 33\18
1286.9175 |
24\13
1295.9169 |
39\21
1303.6307 |
15\8
1316.1656 |
36\19
1330.02 |
21\11
1340.0959 |
27\14
1353.8704 |
E# | Ι# | 34\18
1323.915 |
25\13
1348.9135 |
41\21
1370.4836 |
16\8
1403.91 |
39\19
1440.855 |
23\11
1468.724 |
30\14
1504.1892 |
Ab | Αb | 35\18
1364.9125 |
40\21
1337.0571 |
15\8
1316.1656 |
35\19
1293.075 |
20\11
1276.2818 |
25\14
1253.591 | |
A | Α | 1403.91 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Uranian | Annapolis | 18edf | 13edf | 21edf | 8edf | 19edf | 11edf | 14edf |
A# | Α# | 1\18
44.4 |
1\13
61 7\13 |
2\21
76 4\21 |
1\8
100 |
3\19
126 6\19 |
2\11
145.45 |
3\14
171 3\7 |
Bb | Βb | 3\18
133.3 |
2\13
123 1\13 |
3\21
114 2\7 |
2\19
84 4\19 |
1\11
72.72 |
1\14
57 1\7 | |
B | Β | 4\18
177.7 |
3\13
184 8\13 |
5\21
190 10\21 |
2\8
200 |
5\19
210 10\19 |
3\11
218.18 |
4\14
228 4\7 |
B# | Β# | 5\18
222.2 |
4\13
246 2\13 |
7\21
266.6 |
3\8
300 |
8\19
336 16\19 |
5\11
363.63 |
7\14
400 |
Cb | Γb | 6\18
266.6 |
6\21
228 4\7 |
2\8
200 |
4\19
168 8\19 |
2\11
145.45 |
2\14
114 2\7 | |
C | Γ | 7\18
311.1 |
5\13
307 9\13 |
8\21
304 16\21 |
3\8
300 |
7\19
294 14\19 |
4\11
290.90 |
5\14
285 5\7 |
C# | Γ# | 8\18
355.5 |
6\13
368 3\13 |
10\21
380 20\21 |
4\8
400 |
10\19
421 1\19 |
6\11
436.36 |
8\14
457 1\7 |
Db | Δb | 10\18
444.4 |
7\13
431 10\13 |
11\21
419 1\21 |
9\19
378 18\19 |
5\11
363.63 |
6\14
342 6/7 | |
D | Δ | 11\18
488.8 |
8\13
492 4\13 |
13\21
495 5\21 |
5\8
500 |
12\19
505 5\19 |
7\11
509.09 |
9\14
514 2\7 |
D# | Δ# | 12\18
533.3 |
9\13
553 11\13 |
15\21
571 3\7 |
6\8
600 |
15\19
631 11\19 |
9\11
654.54 |
12\14
685 5\7 |
Eb | Εb | 14\18
622.2 |
10\13
615 5\13 |
16\21
609 11\21 |
14\19
589 9\19 |
8\11
581.81 |
10\14
571 3\7 | |
E | Ε | 15\18
666.6 |
11\13
676 12\13 |
18\21
685 5\7 |
7\8
700 |
17\19
715 15\19 |
10\11
727.27 |
13\14
742 6/7 |
E# | Ε# | 16\18
711.1 |
12\13
730 6\13 |
20\21
761 19\21 |
8\8
800 |
20\19
842 2\19 |
12\11
872.72 |
16\14
914 2\7 |
Ab | Ϛb/Ϝb | 17\18
755.5 |
19\21
723 17\21 |
7\8
700 |
16\19
673 13\19 |
9\11
654.54 |
11\14
628 4\7 | |
A | Ϛ/Ϝ | 800 | ||||||
A# | Ϛ#/Ϝ# | 19\18
844.4 |
14\13
861 7\13 |
23\21
876 4\21 |
9\8
900 |
22\19
926 6\19 |
13\11
945.45 |
17\14
971 3\7 |
Bb | Ζb | 21\18
933.3 |
15\13
923 1\13 |
24\21
914 2\7 |
21\19
884 4\19 |
12\11
872.72 |
15\14
857 1\7 | |
B | Ζ | 22\18
877.7 |
16\13
984 8\13 |
26\21
990 10\21 |
10\8
1000 |
24\19
1010 10\19 |
14\11
1018.18 |
18\14
1028 4\7 |
B# | Ζ# | 23\18
1022.2 |
17\13
1046 2\13 |
28\21
1066.6 |
11\8
1100 |
27\19
1136 16\19 |
16\11
1163.63 |
21\14
1200 |
Cb | Ηb | 24\18
1066.6 |
27\21
1028 4\7 |
10\8
1000 |
23\19
968 8\19 |
13\11
945.45 |
16\14
914 2\7 | |
C | Η | 25\18
1111.1 |
18\13
1107 9\13 |
29\21
1104 16\21 |
11\8
1100 |
26\19
1094 14\19 |
15\11
990.90 |
19\14
985 5\7 |
C# | Η# | 26\18
1155.5 |
19\13
1168 3\13 |
31\21
1180 20\21 |
12\8
1200 |
29\19
1221 1\19 |
17\11
1236.36 |
22\14
1257 1\7 |
Db | Θb | 28\18
1244.4 |
20\13
1231 10\13 |
32\21
1219 1\21 |
28\19
1178 18\19 |
16\11
1163.63 |
20\14
1142 6/7 | |
D | Θ | 29\18
1288.8 |
21\13
1292 4\13 |
34\21
1295 5\21 |
13\8
1300 |
31\19
1305 5\19 |
18\11
1309.09 |
23\14
1314 2\7 |
D# | Θ# | 30\18
1333.3 |
22\13
1353 11\13 |
36\21
1371 3\7 |
14\8
1400 |
34\19
1431 11\19 |
20\11
1454.54 |
26\14
1385 5\7 |
Eb | Ιb | 32\18
1422.2 |
23\13
1415 5\13 |
37\21
1409 11\21 |
33\19
1389 9\19 |
19\11
1381.81 |
24\14
1371 3\7 | |
E | Ι | 33\18
1466.6 |
24\13
1476 12\13 |
39\21
1385 5\7 |
15\8
1500 |
36\19
1515 15\19 |
21\11
1527.27 |
27\14
1542 6/7 |
E# | Ι# | 34\18
1111.1 |
25\13
1530 6\13 |
41\21
1561 19\21 |
16\8
1600 |
39\19
1642 2\19 |
23\11
1672.72 |
30\14
1714 2\7 |
Ab | Αb | 35\18
1155.5 |
40\21
1523 17\21 |
15\8
1500 |
35\19
1473 13\19 |
20\11
1454.54 |
25\14
1428 4\7 | |
A | Α | 1600 |
Intervals
Generators | Sesquitave notation | Interval category name | Generators | Notation of 3/2 inverse | Interval category name |
---|---|---|---|---|---|
The 5-note MOS has the following intervals (from some root): | |||||
0 | A | perfect unison | 0 | A | sesquitave (just fifth) |
1 | C | perfect mosthird (min third) | -1 | D | perfect mosfourth (maj third) |
2 | Eb | minor mosfifth | -2 | B | major mossecond |
3 | Bb | minor mossecond | -3 | E | major mosfifth |
4 | Db | diminished mosfourth | -4 | C# | augmented mosthird |
The chromatic 8-note MOS also has the following intervals (from some root): | |||||
5 | Ab | diminished sesquitave | -5 | A# | augmented unison (chroma) |
6 | Cb | diminished mosthird | -6 | D# | augmented mosfourth |
7 | Ebb | diminished mosfifth | -7 | B# | augmented mossecond |
Genchain
The generator chain for this scale is as follows:
Bbb | Ebb | Cb | Ab | Db | Bb | Eb | C | A | D | B | E | C# | A# | D# | B# | E# |
d2 | d5 | d3 | d6 | d4 | m2 | m5 | P3 | P1 | P4 | M2 | M5 | A3 | A1 | A4 | A2 | A5 |
Modes
The mode names are based on the major satellites of Uranus, in order of size:
Mode | Scale | UDP | Interval type (mos-) | |||
---|---|---|---|---|---|---|
name | pattern | notation | 2nd | 3rd | 4th | 5th |
Titanian | LLsLs | 4|0 | M | A | P | M |
Oberonan | LsLLs | 3|1 | M | P | P | M |
Umbrielan | LsLsL | 2|2 | M | P | P | m |
Arielan | sLLsL | 1|3 | m | P | P | m |
Mirandan | sLsLL | 0|4 | m | P | d | m |
Temperaments
The most basic rank-2 temperament interpretation of uranian is semiwolf, which has 4:7:10 chords spelled root-(p+1g)-(3p-2g)
(p = 3/2, g = the approximate 7/6). The name "semiwolf" comes from two 7/6 generators approximating a 27/20 wolf fourth. This is further extended to the 11-limit in two interpretations: semilupine where 2 major mos2nds (LL) equal 11/9, and hemilycan where 1 major and 2 minor mos2nds (sLs) equal 11/9. Basic 8edf fits both extensions.
Semiwolf
Subgroup: 3/2.7/4.5/2
Mapping: [⟨1 1 3], ⟨0 1 -2]]
Semilupine
Subgroup: 3/2.7/4.5/2.11/4
Mapping: [⟨1 1 3 4], ⟨0 1 -2 -4]]
Hemilycan
Subgroup: 3/2.7/4.5/2.11/4
Mapping: [⟨1 1 3 1], ⟨0 1 -2 4]]
Scale tree
The spectrum looks like this:
Generator
(bright) |
Cents | 800edf | L | s | L/s | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Chroma-positive | Chroma-negative | Chroma-positive | Chroma-negative | |||||||
3\5 | 421.173 | 280.782 | 480 | 320 | 1 | 1 | 1.000 | Equalised | ||
11\18 | 428.973 | 272.983 | 488.8 | 311.1 | 4 | 3 | 1.333 | |||
30\49 | 429.768 | 272.187 | 489 39\49 | 310 10\49 | 11 | 8 | 1.375 | |||
19\31 | [[87]] | [[88]] | 490 10\31 | 309 21\31 | 7 | 5 | 1.400 | |||
27\44 | 430.745 | 271.31 | 490.90 | 309.09 | 10 | 7 | 1.429 | |||
35\57 | 431.025 | 270.93 | 491 13\57 | 308 44\57 | 13 | 9 | 1.444 | |||
8\13 | 431.972 | 269.983 | 492 4\13 | 307 9\13 | 3 | 2 | 1.500 | Semiwolf and Semilupine start here | ||
29\47 | 433.121 | 268.834 | 493 29\47 | 306 18\47 | 11 | 7 | 1.571 | |||
21\34 | 433.56 | 268.395 | 494 2\17 | 305 15\17 | 8 | 5 | 1.600 | |||
13\21 | 435.084 | 266.871 | 495 5\21 | 304 16\21 | 5 | 3 | 1.667 | |||
18\29 | 435.696 | 266.259 | 496 16\29 | 303 13\29 | 7 | 4 | 1.750 | |||
23\37 | 436.35 | 265.605 | 497 11\37 | 302 26\37 | 9 | 5 | 1.800 | |||
28\45 | 436.772 | 265.183 | 497.7 | 302.2 | 11 | 6 | 1.833 | |||
33\53 | 437.066 | 264.889 | 498 6\53 | 301 47\52 | 13 | 7 | 1.857 | |||
38\61 | 437.283 | 264.672 | 498 22\61 | 301 39\61 | 15 | 8 | 1.875 | |||
43\69 | 437.45 | 264.505 | 498 38\69 | 301 31\69 | 17 | 9 | 1.889 | |||
48\77 | 437.582 | 264.373 | 498 54\77 | 301 23\77 | 19 | 10 | 1.900 | |||
53\85 | 437.69 | 264.265 | 498 14\17 | 301 3\17 | 21 | 11 | 1.909 | |||
58\93 | 437.778 | 264.277 | 498 86\93 | 301 7\93 | 23 | 12 | 1.917 | |||
63\101 | 437.853 | 264.122 | 499.0099 | 300.9900 | 25 | 13 | 1.923 | |||
5\8 | 438.722 | 263.233 | 500 | 300 | 2 | 1 | 2.000 | Semilupine ends, Hemilycan begins | ||
67\107 | 439.542 | 262.413 | 500 100\107 | 299 7\107 | 27 | 13 | 2.077 | |||
62\99 | 439.608 | 262.387 | 501.01 | 298.98 | 25 | 12 | 2.083 | |||
57\91 | 439.686 | 262.369 | 501 9\91 | 298 82\91 | 23 | 11 | 2.091 | |||
52\83 | 439.779 | 262.176 | 501 17\83 | 298 66\83 | 21 | 10 | 2.100 | |||
47\75 | 439.892 | 262.063 | 501.3 | 298.6 | 19 | 9 | 2.111 | |||
42\67 | 440.031 | 261.924 | 501 33\67 | 298 34\67 | 17 | 8 | 2.125 | |||
37\59 | 440.209 | 261.746 | 501 41\59 | 298 18\59 | 15 | 7 | 2.143 | |||
32\51 | 440.442 | 261.513 | 501 49\51 | 298 2\51 | 13 | 6 | 2.167 | |||
27\43 | 440.762 | 261.193 | 502 14\43 | 297 29\43 | 11 | 5 | 2.200 | |||
22\35 | 441.229 | 260.726 | 502 6\7 | 297 1\7 | 9 | 4 | 2.250 | |||
17\27 | 441.972 | 259.973 | 503 19\27 | 296 8\27 | 7 | 3 | 2.333 | |||
29\46 | 442.537 | 259.418 | 504 8\23 | 295 15\23 | 12 | 5 | 2.400 | |||
12\19 | 443.34 | 258.615 | 505 5\19 | 294 14\19 | 5 | 2 | 2.500 | |||
19\30 | [[89]] | [[90]] | 506.6 | 293.3 | 8 | 3 | 2.667 | |||
26\41 | 445.142 | 256.813 | 507 13\41 | 292 28\41 | 11 | 4 | 2.750 | |||
33\52 | 445.471 | 256.484 | 507 9\13 | 292 4\13 | 14 | 5 | 2.800 | |||
40\63 | 445.686 | 256.269 | 507 59\63 | 292 4\63 | 17 | 6 | 2.833 | |||
47\74 | 445.836 | 256.119 | 508 4\37 | 291 33\37 | 20 | 7 | 2.857 | |||
7\11 | 446.699 | 255.256 | 509.09 | 290.90 | 3 | 1 | 3.000 | Semiwolf and Hemilycan end here | ||
37\58 | 447.799 | 254.156 | 510 10\29 | 289 19\19 | 16 | 5 | 3.200 | |||
30\47 | 448,056 | 253.899 | 510 30\47 | 289 17\47 | 13 | 4 | 3.250 | |||
23\36 | 448.471 | 253.484 | 511.1 | 288.8 | 10 | 3 | 3.333 | |||
16\25 | 449.251 | 252.704 | 512 | 288 | 7 | 2 | 3.500 | |||
25\39 | 449.971 | 251.984 | 512 32\39 | 287 7\39 | 11 | 3 | 3.667 | |||
34\53 | 450.311 | 251.644 | 513 11\53 | 286 42\53 | 15 | 4 | 3.750 | |||
9\14 | 451.257 | 250.698 | 514 2\7 | 285 5\7 | 4 | 1 | 4.000 | Near 24edo | ||
2\3 | 467.97 | 233.985 | 533.3 | 266.6 | 1 | 0 | → inf | Paucitonic |