User:BudjarnLambeth/Sandbox2
Title1
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.5 | -12.3 | -16.9 | +0.0 | +34.3 | -16.7 |
Relative (%) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.6 | -12.4 | -17.0 | +0.0 | +34.4 | -16.7 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (31) |
34 (34) |
36 (36) |
38 (38) |
40 (0) |
42 (2) |
43 (3) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | +40.7 | +10.1 | +6.7 | +24.9 | -39.9 | +10.1 |
Relative (%) | +3.3 | +3.3 | +6.7 | +21.4 | +6.7 | +40.6 | +10.0 | +6.7 | +24.8 | -39.8 | +10.0 | |
Steps (reduced) |
12 (5) |
19 (5) |
24 (3) |
28 (0) |
31 (3) |
34 (6) |
36 (1) |
38 (3) |
40 (5) |
41 (6) |
43 (1) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.7 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 |
Relative (%) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.6 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 | |
Steps (reduced) |
12 (12) |
19 (0) |
24 (5) |
28 (9) |
31 (12) |
34 (15) |
36 (17) |
38 (0) |
40 (2) |
41 (3) |
43 (5) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -0.8 | +1.5 | +15.5 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 |
Relative (%) | +0.8 | -0.8 | +1.5 | +15.4 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (0) |
34 (3) |
36 (5) |
38 (7) |
40 (9) |
41 (10) |
43 (12) |
Title2
Octave stretch or compression
72edo's approximations of harmonics 3, 5, 7, 11, 13 and 17 can all be improved by slightly stretching the octave, using tunings such as 114edt or 186ed6. 114edt is quite hard and might be best for the 13- or 17-limit specifically. 186ed6 is milder and less disruptive, suitable for 11-limit and/or full 19-limit harmonies.
What follows is a comparison of stretched-octave 72edo tunings.
- EDONAME
- Step size: NNN ¢, octave size: NNN ¢
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -1.96 | +0.00 | -2.98 | -1.96 | -2.16 | +0.00 | -3.91 | -2.98 | -1.32 | -1.96 |
Relative (%) | +0.0 | -11.7 | +0.0 | -17.9 | -11.7 | -13.0 | +0.0 | -23.5 | -17.9 | -7.9 | -11.7 | |
Steps (reduced) |
72 (0) |
114 (42) |
144 (0) |
167 (23) |
186 (42) |
202 (58) |
216 (0) |
228 (12) |
239 (23) |
249 (33) |
258 (42) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -7.19 | -2.16 | -4.94 | +0.00 | -4.96 | -3.91 | +2.49 | -2.98 | -4.11 | -1.32 | +5.06 | -1.96 |
Relative (%) | -43.2 | -13.0 | -29.6 | +0.0 | -29.7 | -23.5 | +14.9 | -17.9 | -24.7 | -7.9 | +30.4 | -11.7 | |
Steps (reduced) |
266 (50) |
274 (58) |
281 (65) |
288 (0) |
294 (6) |
300 (12) |
306 (18) |
311 (23) |
316 (28) |
321 (33) |
326 (38) |
330 (42) |
- Step size: NNN ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.55 | -1.09 | +1.09 | -1.71 | -0.55 | -0.63 | +1.64 | -2.18 | -1.17 | +0.57 | +0.00 |
Relative (%) | +3.3 | -6.5 | +6.5 | -10.3 | -3.3 | -3.8 | +9.8 | -13.1 | -7.0 | +3.4 | +0.0 | |
Steps (reduced) |
72 (72) |
114 (114) |
144 (144) |
167 (167) |
186 (186) |
202 (202) |
216 (216) |
228 (228) |
239 (239) |
249 (249) |
258 (0) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.18 | -0.08 | -2.81 | +2.18 | -2.73 | -1.64 | +4.81 | -0.62 | -1.72 | +1.11 | +7.53 | +0.55 |
Relative (%) | -31.1 | -0.5 | -16.8 | +13.1 | -16.4 | -9.8 | +28.8 | -3.7 | -10.3 | +6.7 | +45.2 | +3.3 | |
Steps (reduced) |
266 (8) |
274 (16) |
281 (23) |
288 (30) |
294 (36) |
300 (42) |
306 (48) |
311 (53) |
316 (58) |
321 (63) |
326 (68) |
330 (72) |
- Step size: 16.677 ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its SUBGROUP WE tuning and SUBGROUP TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.74 | -0.78 | +1.49 | -1.25 | -0.03 | -0.07 | +2.23 | -1.55 | -0.51 | +1.26 | +0.71 |
Relative (%) | +4.5 | -4.7 | +8.9 | -7.5 | -0.2 | -0.4 | +13.4 | -9.3 | -3.1 | +7.5 | +4.3 | |
Step | 72 | 114 | 144 | 167 | 186 | 202 | 216 | 228 | 239 | 249 | 258 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.45 | +0.67 | -2.03 | +2.98 | -1.92 | -0.81 | +5.65 | +0.23 | -0.85 | +2.00 | -8.25 | +1.45 |
Relative (%) | -26.7 | +4.0 | -12.2 | +17.8 | -11.5 | -4.9 | +33.9 | +1.4 | -5.1 | +12.0 | -49.5 | +8.7 | |
Step | 266 | 274 | 281 | 288 | 294 | 300 | 306 | 311 | 316 | 321 | 325 | 330 |
- Step size: NNN ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.76 | -0.76 | +1.51 | -1.23 | +0.00 | -0.04 | +2.27 | -1.51 | -0.47 | +1.30 | +0.76 |
Relative (%) | +4.5 | -4.5 | +9.1 | -7.3 | +0.0 | -0.2 | +13.6 | -9.1 | -2.8 | +7.8 | +4.5 | |
Steps (reduced) |
72 (72) |
114 (114) |
144 (144) |
167 (167) |
186 (0) |
202 (16) |
216 (30) |
228 (42) |
239 (53) |
249 (63) |
258 (72) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.40 | +0.72 | -1.98 | +3.03 | -1.87 | -0.76 | +5.70 | +0.29 | -0.79 | +2.06 | -8.19 | +1.51 |
Relative (%) | -26.4 | +4.3 | -11.9 | +18.2 | -11.2 | -4.5 | +34.2 | +1.7 | -4.8 | +12.3 | -49.1 | +9.1 | |
Steps (reduced) |
266 (80) |
274 (88) |
281 (95) |
288 (102) |
294 (108) |
300 (114) |
306 (120) |
311 (125) |
316 (130) |
321 (135) |
325 (139) |
330 (144) |
- Step size: 16.678 ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning ZPINAME does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.82 | -0.66 | +1.63 | -1.09 | +0.15 | +0.13 | +2.45 | -1.33 | -0.27 | +1.50 | +0.97 |
Relative (%) | +4.9 | -4.0 | +9.8 | -6.5 | +0.9 | +0.8 | +14.7 | -8.0 | -1.6 | +9.0 | +5.8 | |
Step | 72 | 114 | 144 | 167 | 186 | 202 | 216 | 228 | 239 | 249 | 258 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.18 | +0.95 | -1.75 | +3.26 | -1.62 | -0.51 | +5.95 | +0.54 | -0.53 | +2.32 | -7.92 | +1.78 |
Relative (%) | -25.1 | +5.7 | -10.5 | +19.6 | -9.7 | -3.1 | +35.7 | +3.3 | -3.2 | +13.9 | -47.5 | +10.7 | |
Step | 266 | 274 | 281 | 288 | 294 | 300 | 306 | 311 | 316 | 321 | 325 | 330 |
- Step size: 16.680 ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its SUBGROUP WE tuning and SUBGROUP TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.96 | -0.44 | +1.92 | -0.75 | +0.52 | +0.53 | +2.88 | -0.87 | +0.21 | +2.00 | +1.48 |
Relative (%) | +5.8 | -2.6 | +11.5 | -4.5 | +3.1 | +3.2 | +17.3 | -5.2 | +1.2 | +12.0 | +8.9 | |
Step | 72 | 114 | 144 | 167 | 186 | 202 | 216 | 228 | 239 | 249 | 258 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.65 | +1.49 | -1.19 | +3.84 | -1.04 | +0.09 | +6.57 | +1.17 | +0.10 | +2.96 | -7.27 | +2.44 |
Relative (%) | -21.9 | +9.0 | -7.1 | +23.0 | -6.2 | +0.5 | +39.4 | +7.0 | +0.6 | +17.8 | -43.6 | +14.7 | |
Step | 266 | 274 | 281 | 288 | 294 | 300 | 306 | 311 | 316 | 321 | 325 | 330 |
- Step size: NNN ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.93 | +0.00 | +3.86 | +0.58 | +1.93 | -0.78 | +5.79 | +0.00 | +2.51 | -4.00 | +3.86 |
Relative (%) | +14.6 | +0.0 | +29.2 | +4.4 | +14.6 | -5.9 | +43.8 | +0.0 | +19.0 | -30.3 | +29.2 | |
Steps (reduced) |
91 (91) |
144 (0) |
182 (38) |
211 (67) |
235 (91) |
255 (111) |
273 (129) |
288 (0) |
302 (14) |
314 (26) |
326 (38) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | +1.15 | +0.58 | -5.49 | -4.78 | +1.93 | +0.78 | +4.44 | -0.78 | -2.07 | +0.22 | +5.79 |
Relative (%) | -19.9 | +8.7 | +4.4 | -41.6 | -36.2 | +14.6 | +5.9 | +33.6 | -5.9 | -15.7 | +1.7 | +43.8 | |
Steps (reduced) |
336 (48) |
346 (58) |
355 (67) |
363 (75) |
371 (83) |
379 (91) |
386 (98) |
393 (105) |
399 (111) |
405 (117) |
411 (123) |
417 (129) |