58edf

Revision as of 14:39, 22 March 2025 by FloraC (talk | contribs) (Theory: +subsets and supersets)
← 57edf 58edf 59edf →
Prime factorization 2 × 29
Step size 12.1027 ¢ 
Octave 99\58edf (1198.16 ¢)
Twelfth 157\58edf (1900.12 ¢)
Consistency limit 12
Distinct consistency limit 12

58 equal divisions of the perfect fifth (abbreviated 58edf or 58ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 58 equal parts of about 12.1 ¢ each. Each step represents a frequency ratio of (3/2)1/58, or the 58th root of 3/2.

Theory

58edf corresponds to 99.1517…edo. It is related to 99edo, but with the 3/2 rather than the 2/1 being just. The octave is about 1.8354 cents compressed. 58edf is consistent to the 12-integer-limit. In comparison, 99edo is only consistent up to the 10-integer-limit.

Harmonics

Approximation of harmonics in 58edf
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -1.84 -1.84 -3.67 -2.70 -3.67 -4.28 -5.51 -3.67 -4.53 -0.10 -5.51
Relative (%) -15.2 -15.2 -30.3 -22.3 -30.3 -35.4 -45.5 -30.3 -37.5 -0.8 -45.5
Steps
(reduced)
99
(41)
157
(41)
198
(24)
230
(56)
256
(24)
278
(46)
297
(7)
314
(24)
329
(39)
343
(53)
355
(7)
Approximation of harmonics in 58edf (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +1.15 +5.98 -4.53 +4.76 -3.37 -5.51 -2.29 +5.73 +5.98 -1.94 +5.83 +4.76
Relative (%) +9.5 +49.4 -37.5 +39.3 -27.9 -45.5 -18.9 +47.4 +49.4 -16.0 +48.1 +39.3
Steps
(reduced)
367
(19)
378
(30)
387
(39)
397
(49)
405
(57)
413
(7)
421
(15)
429
(23)
436
(30)
442
(36)
449
(43)
455
(49)

Subsets and supersets

Since 58 factors into primes as 2 × 29, 58edf contains 2edf and 29edf as subsets.

Intervals

  Todo: complete table

The mapping for 11 and 13 should differ from 99edo.

Degrees Cents Value Five limit Seven limit Eleven limit Thirteen limit
1 12.1027 2048/2025 126/125 99/98 91/90
2 24.2053 81/80 64/63 55/54
3 36.308 128/125 49/48
4 48.4107 250/243 36/35 33/32
5 60.5134 648/625 28/27 26/25
6 72.616 25/24 22/21
7 84.7187 256/243 21/20
8 96.8214 135/128 81/77 52/49
9 108.92405 16/15
10 121.0267 2187/2048 15/14
11 133.1294 27/25 13/12
12 145.2321 625/576 49/45
13 157.3347 800/729 35/32 11/10
14 169.4374 1125/1024 54/49
15 181.54 10/9 10/9
16 193.6428 4096/3645 28/25
17 205.7454 9/8
18 217.8481 256/225 245/216 112/99 91/80
19 229.9508 729/640 8/7
20 242.05345 144/125 63/55 52/45
21 254.1561 125/108 81/70 15/13
22 266.2587 729/625 7/6
23 278.3615 75/64 33/28
24 290.4641 32/27 32/27 13/11
25 302.5668 1215/1024 25/21
26 314.6695 6/5
27 326.7722 3125/2592 98/81 91/75
28 338.8748 243/200 128/105 11/9
29 350.9775 625/512 49/40
30 363.0802 100/81 27/22 16/13
31 375.18285 3888/3125 56/45
32 387.2855 5/4
33 399.3882 512/405 63/50 49/39
34 411.4909 81/64 80/63 33/26
35 423.5935 32/25 14/11
36 435.6962 625/486 9/7
37 447.7989 162/125 35/27 13/10
38 459.90155 125/96 64/49 55/42
39 472.0042 320/243 21/16
40 484.1069 675/512 250/189 65/49
41 469.2096 4/3
42 508.3122 8192/6075 75/56 66/49
43 520.4149 27/20
44 532.5176 512/375 49/36
45 544.6203 1000/729 48/35 11/8
46 556.7229 864/625 112/81 91/66
47 568.8256 25/18 18/13
48 580.9283 1024/729 7/5
49 593.03095 45/32
50 605.1336 64/45
51 617.2362 729/512 10/7
52 629.339 36/25 13/9
53 641.4416 625/432 81/56 75/52
54 653.5443 729/500 35/24 16/11
55 665.647 375/256 72/49
56 677.7497 40/27
57 689.8523 6075/4096 112/75 49/33
58 701.955 3/2
59 714.0577 1024/675 189/125 91/60
60 726.16035 243/160 32/21
61 738.263 192/125 49/32
62 750.3657 125/81 54/35 20/13
63 762.4684 972/625 14/9
64 774.571 25/16 11/7
65 786.6737 128/81 63/40 52/33
66 798.7764 405/256 100/63 78/49
67 810.87905 8/5
68 822.9817 3125/1944 45/28
69 835.0844 81/50 44/27 13/8
70 847.1871 625/384 49/30
71 859.2897 400/243 105/64 18/11
72 871.3924 3375/2048 81/49
73 883.4951 5/3
74 895.5978 2048/1215 42/25
75 907.7004 27/16 22/13
76 919.8031 128/75 56/33 56/33
77 931.9058 1250/729 12/7
78 944.00845 216/125 140/81 26/15
79 956.1111 125/72 110/63 45/26
80 968.2138 1280/729 7/4
81 980.3165 225/128 225/128 99/56
82 992.4191 16/9
83 1004.5218 3645/2048 25/14
84 1016.6245 9/5
85 1028.7272 2048/1125 49/27
86 1040.8298 729/400 64/35 11/6
87 1052.9325 1152/625 90/49
88 1065.0352 50/27
89 1077.13785 4096/2187 28/15
90 1089.2405 15/8
91 1101.3432 256/135 189/100 154/81 49/26
92 1113.4459 243/128 40/21
93 1125.5485 48/25
94 1137.6512 625/324 27/14 25/13
95 1149.7539 243/125 35/18 35/18
96 1161.8566 125/64 49/25 49/25
97 1173.9592 160/81 63/32
98 1186.0619 2025/1024 125/63
99 1198.1646 2/1
100 1210.2672 4096/2025 252/125 99/49 91/45
101 1222.3699 81/40 128/63 55/27
102 1234.4726 256/125 49/24
103 1246.5753 500/243 72/35 33/16
104 1258.6779 1296/625 56/27 52/25
105 1270.7806 25/12 44/21
106 1282.8833 512/243 21/10
107 1294.98595 135/64 162/77 104/49
108 1307.0886 32/15
109 1319.1913 2187/1024 15/7
110 1331.294 54/25 13/6
111 1343.3966 625/288 98/45
112 1355.4993 1600/729 35/16 11/5
113 1367.602 1125/512 108/49
114 1379.7047 20/9
115 1391.8073 8192/3645 56/25
116 1403.91 9/4

See also