961edo

From Xenharmonic Wiki
Revision as of 02:13, 16 November 2024 by ArrowHead294 (talk | contribs)
Jump to navigation Jump to search
← 960edo 961edo 962edo →
Prime factorization 312
Step size 1.2487 ¢ 
Fifth 562\961 (701.769 ¢)
Semitones (A1:m2) 90:73 (112.4 ¢ : 91.16 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

961edo has a reasonable 7-limit interpretation. The equal temperament tempers out the schisma in the 5-limit; 4375/4374, 65625/65536, and 14348907/14336000 in the 7-limit, supporting pontiac, the 395 & 566 temperament.

In the 11-limit, the 961e val 961 1523 2231 2698 3324] scores the best, which tempers out 102487/102400 and 234375/234256. It prompts us to consider the 961de val 961 1523 2231 2697 3324], which tempers out 3025/3024 and 184877/184320. The patent val 961 1523 2231 2698 3325] tempers out 4000/3993 and 46656/46585.

It works much better as a 2.3.5.7.13.17 subgroup temperament, in which case it tempers out 10985/10976, 1275/1274, 2025/2023 and 4914/4913.

Odd harmonics

Approximation of odd harmonics in 961edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.186 -0.466 +0.165 -0.372 +0.607 -0.153 +0.597 -0.065 -0.323 -0.021 -0.179
Relative (%) -14.9 -37.3 +13.2 -29.8 +48.6 -12.3 +47.8 -5.2 -25.8 -1.7 -14.3
Steps
(reduced)
1523
(562)
2231
(309)
2698
(776)
3046
(163)
3325
(442)
3556
(673)
3755
(872)
3928
(84)
4082
(238)
4221
(377)
4347
(503)

Subsets and supersets

Since 961 factors into 312, 961edo has 31edo as its subset edo.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [-1523 961 | [961 1523]] | 0.0587 | 0.0587 | 4.70 |- | 2.3.5 | 32805/32768, [-22 -137 103 | [961 1523 2231]] | 0.1060 | 0.0823 | 6.59 |- | 2.3.5.7 | 4375/4374, 32805/32768, [15 9 14 -22 | [961 1523 2231 2698]] | 0.0648 | 0.1008 | 8.01 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 399\961 | 498.231 | 4/3 | Pontiac Template:Rank-2 end Template:Orf

Scales