337edo

From Xenharmonic Wiki
Revision as of 01:48, 16 November 2024 by ArrowHead294 (talk | contribs)
Jump to navigation Jump to search
← 336edo 337edo 338edo →
Prime factorization 337 (prime)
Step size 3.56083 ¢ 
Fifth 197\337 (701.484 ¢)
Semitones (A1:m2) 31:26 (110.4 ¢ : 92.58 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

337edo is consistent to the 9-odd-limit, but the error of harmonic 5 is quite large. If the harmonic is used at all, it tends very flat. The equal temperament tempers out 16875/16807, 420175/419904, and 5250987/5242880 in the 7-limit. It supports tokko and sqrtphi.

Odd harmonics

Approximation of odd harmonics in 337edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.47 -1.74 -0.28 -0.94 +0.61 -0.17 +1.35 -1.69 +1.60 -0.75 -1.57
Relative (%) -13.2 -49.0 -7.9 -26.5 +17.2 -4.8 +37.8 -47.5 +44.8 -21.1 -44.0
Steps
(reduced)
534
(197)
782
(108)
946
(272)
1068
(57)
1166
(155)
1247
(236)
1317
(306)
1377
(29)
1432
(84)
1480
(132)
1524
(176)

Subsets and supersets

337edo is the 68th prime edo.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [-534 337 | [337 534]] | 0.1487 | 0.1487 | 4.18 |- | 2.3.5 | 15625/15552, [-88 57 -1 | [337 534 782]] | 0.3495 | 0.3089 | 8.67 |- | 2.3.5.7 | 15625/15552, 16875/16807, 7381125/7340032 | [337 534 782 946]] | 0.2870 | 0.2886 | 8.10 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 67\337 | 238.58 | 147/128 | Tokko |- | 1 | 89\337 | 316.91 | 6/5 | Hanson |- | 1 | 117\337 | 416.62 | 14/11 | Sqrtphi (337, 11-limit) Template:Rank-2 end Template:Orf

Music

Francium