26ed5
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 25ed5 | 26ed5 | 27ed5 → |
26 equal divisions of the 5th harmonic (abbreviated 26ed5) is a nonoctave tuning system that divides the interval of 5/1 into 26 equal parts of about 107 ¢ each. Each step represents a frequency ratio of 51/26, or the 26th root of 5.
26ed5 is a strong tuning for the obscure, complex subgroup 5.6.41.67.97.103.151.181.193.
Alternatively, it can be used as a mediocre but workable tuning for the simpler, less unwieldy subgroup 5.6.11.17.41. Most of these harmonics are tuned sharp, so 26ed5 can be made to work better but compressing 26ed5’s equave, making 5/1 slightly flat but the other harmonics more in-tune. This can elevate 26ed5 from mediocre to pretty decent.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 107.2 | 18/17 |
2 | 214.3 | 17/15, 25/22 |
3 | 321.5 | 6/5, 23/19 |
4 | 428.7 | 23/18 |
5 | 535.8 | 15/11 |
6 | 643 | |
7 | 750.2 | 17/11, 20/13, 23/15 |
8 | 857.3 | 18/11 |
9 | 964.5 | 7/4 |
10 | 1071.7 | 13/7, 24/13 |
11 | 1178.8 | |
12 | 1286 | 19/9, 21/10, 23/11 |
13 | 1393.2 | |
14 | 1500.3 | |
15 | 1607.5 | |
16 | 1714.7 | |
17 | 1821.8 | 20/7 |
18 | 1929 | |
19 | 2036.2 | 13/4 |
20 | 2143.3 | 24/7 |
21 | 2250.5 | 11/3 |
22 | 2357.7 | |
23 | 2464.8 | 25/6 |
24 | 2572 | 22/5 |
25 | 2679.1 | |
26 | 2786.3 | 5/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -21.2 | +27.0 | -42.3 | +0.0 | +5.9 | -46.7 | +43.6 | -53.1 |
Relative (%) | -19.8 | +25.2 | -39.5 | +0.0 | +5.5 | -43.6 | +40.7 | -49.6 | |
Steps (reduced) |
11 (11) |
18 (18) |
22 (22) |
26 (0) |
29 (3) |
31 (5) |
34 (8) |
35 (9) |
Harmonic | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +28.2 | -46.7 | +24.7 | +46.5 | +37.2 | -42.6 | -50.9 | -35.7 | +0.9 | +25.6 | -21.2 |
Relative (%) | +26.3 | -43.6 | +23.0 | +43.3 | +34.7 | -39.8 | -47.5 | -33.3 | +0.8 | +23.9 | -19.8 | |
Steps (reduced) |
39 (13) |
41 (15) |
46 (20) |
48 (22) |
51 (25) |
54 (2) |
55 (3) |
58 (6) |
60 (8) |
61 (9) |
62 (10) |
Harmonic | 59 | 61 | 67 | 71 | 73 | 79 | 83 | 89 | 97 | 101 | 103 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +13.8 | -43.9 | +8.0 | +14.8 | -33.3 | +44.2 | -41.3 | +52.2 | +10.4 | +47.6 | +13.6 |
Relative (%) | +12.9 | -41.0 | +7.4 | +13.8 | -31.1 | +41.3 | -38.5 | +48.7 | +9.7 | +44.4 | +12.7 | |
Steps (reduced) |
66 (14) |
66 (14) |
68 (16) |
69 (17) |
69 (17) |
71 (19) |
71 (19) |
73 (21) |
74 (22) |
75 (23) |
75 (23) |
Harmonic | 107 | 109 | 113 | 127 | 131 | 137 | 139 | 149 | 151 | 157 | 163 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -52.3 | +22.8 | -39.6 | -27.5 | +26.0 | -51.5 | +30.5 | +17.4 | -5.6 | +34.1 | -30.9 |
Relative (%) | -48.8 | +21.3 | -37.0 | -25.6 | +24.3 | -48.1 | +28.5 | +16.3 | -5.3 | +31.8 | -28.8 | |
Steps (reduced) |
75 (23) |
76 (24) |
76 (24) |
78 (0) |
79 (1) |
79 (1) |
80 (2) |
81 (3) |
81 (3) |
82 (4) |
82 (4) |
Harmonic | 167 | 173 | 179 | 181 | 191 | 193 | 197 | 199 | 211 | 223 | 227 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +34.3 | -26.8 | +21.4 | +2.1 | +16.2 | -1.8 | -37.4 | +52.3 | -49.1 | -37.6 | +38.7 |
Relative (%) | +32.0 | -25.0 | +19.9 | +2.0 | +15.1 | -1.7 | -34.9 | +48.8 | -45.8 | -35.1 | +36.2 | |
Steps (reduced) |
83 (5) |
83 (5) |
84 (6) |
84 (6) |
85 (7) |
85 (7) |
85 (7) |
86 (8) |
86 (8) |
87 (9) |
88 (10) |