151edt
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 150edt | 151edt | 152edt → |
151 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 151edt or 151ed3), is a nonoctave tuning system that divides the interval of 3/1 into 151 equal parts of about 12.6 ¢ each. Each step represents a frequency ratio of 31/151, or the 151st root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 12.6 | 8.6 | |
2 | 25.2 | 17.2 | |
3 | 37.8 | 25.8 | 45/44, 46/45, 47/46 |
4 | 50.4 | 34.4 | 35/34 |
5 | 63 | 43 | 57/55 |
6 | 75.6 | 51.7 | 23/22, 47/45 |
7 | 88.2 | 60.3 | |
8 | 100.8 | 68.9 | |
9 | 113.4 | 77.5 | 47/44 |
10 | 126 | 86.1 | |
11 | 138.6 | 94.7 | |
12 | 151.1 | 103.3 | |
13 | 163.7 | 111.9 | |
14 | 176.3 | 120.5 | 41/37, 52/47 |
15 | 188.9 | 129.1 | 29/26 |
16 | 201.5 | 137.7 | |
17 | 214.1 | 146.4 | 43/38 |
18 | 226.7 | 155 | |
19 | 239.3 | 163.6 | 31/27, 54/47 |
20 | 251.9 | 172.2 | |
21 | 264.5 | 180.8 | |
22 | 277.1 | 189.4 | 27/23 |
23 | 289.7 | 198 | 13/11 |
24 | 302.3 | 206.6 | 25/21 |
25 | 314.9 | 215.2 | 6/5 |
26 | 327.5 | 223.8 | 52/43 |
27 | 340.1 | 232.5 | 45/37 |
28 | 352.7 | 241.1 | 38/31, 49/40 |
29 | 365.3 | 249.7 | 21/17 |
30 | 377.9 | 258.3 | 46/37, 51/41 |
31 | 390.5 | 266.9 | |
32 | 403.1 | 275.5 | |
33 | 415.7 | 284.1 | 47/37 |
34 | 428.3 | 292.7 | |
35 | 440.9 | 301.3 | |
36 | 453.4 | 309.9 | |
37 | 466 | 318.5 | |
38 | 478.6 | 327.2 | 29/22 |
39 | 491.2 | 335.8 | |
40 | 503.8 | 344.4 | |
41 | 516.4 | 353 | 31/23 |
42 | 529 | 361.6 | |
43 | 541.6 | 370.2 | 26/19, 41/30 |
44 | 554.2 | 378.8 | 51/37 |
45 | 566.8 | 387.4 | 43/31 |
46 | 579.4 | 396 | |
47 | 592 | 404.6 | 38/27 |
48 | 604.6 | 413.2 | |
49 | 617.2 | 421.9 | 10/7 |
50 | 629.8 | 430.5 | 36/25 |
51 | 642.4 | 439.1 | |
52 | 655 | 447.7 | 54/37 |
53 | 667.6 | 456.3 | 25/17 |
54 | 680.2 | 464.9 | 37/25 |
55 | 692.8 | 473.5 | |
56 | 705.4 | 482.1 | |
57 | 718 | 490.7 | |
58 | 730.6 | 499.3 | 29/19 |
59 | 743.1 | 507.9 | |
60 | 755.7 | 516.6 | |
61 | 768.3 | 525.2 | |
62 | 780.9 | 533.8 | |
63 | 793.5 | 542.4 | |
64 | 806.1 | 551 | 43/27 |
65 | 818.7 | 559.6 | |
66 | 831.3 | 568.2 | |
67 | 843.9 | 576.8 | |
68 | 856.5 | 585.4 | 41/25 |
69 | 869.1 | 594 | 38/23 |
70 | 881.7 | 602.6 | |
71 | 894.3 | 611.3 | 52/31 |
72 | 906.9 | 619.9 | |
73 | 919.5 | 628.5 | 17/10 |
74 | 932.1 | 637.1 | 12/7 |
75 | 944.7 | 645.7 | 19/11 |
76 | 957.3 | 654.3 | 33/19 |
77 | 969.9 | 662.9 | 7/4 |
78 | 982.5 | 671.5 | 30/17 |
79 | 995.1 | 680.1 | |
80 | 1007.7 | 688.7 | |
81 | 1020.3 | 697.4 | |
82 | 1032.8 | 706 | |
83 | 1045.4 | 714.6 | |
84 | 1058 | 723.2 | |
85 | 1070.6 | 731.8 | |
86 | 1083.2 | 740.4 | 43/23 |
87 | 1095.8 | 749 | |
88 | 1108.4 | 757.6 | 55/29 |
89 | 1121 | 766.2 | |
90 | 1133.6 | 774.8 | 52/27 |
91 | 1146.2 | 783.4 | |
92 | 1158.8 | 792.1 | 41/21, 43/22 |
93 | 1171.4 | 800.7 | 57/29 |
94 | 1184 | 809.3 | |
95 | 1196.6 | 817.9 | |
96 | 1209.2 | 826.5 | |
97 | 1221.8 | 835.1 | |
98 | 1234.4 | 843.7 | 49/24, 51/25 |
99 | 1247 | 852.3 | 37/18 |
100 | 1259.6 | 860.9 | |
101 | 1272.2 | 869.5 | 25/12 |
102 | 1284.8 | 878.1 | 21/10 |
103 | 1297.4 | 886.8 | 55/26 |
104 | 1310 | 895.4 | |
105 | 1322.6 | 904 | |
106 | 1335.1 | 912.6 | |
107 | 1347.7 | 921.2 | 37/17 |
108 | 1360.3 | 929.8 | 57/26 |
109 | 1372.9 | 938.4 | |
110 | 1385.5 | 947 | |
111 | 1398.1 | 955.6 | |
112 | 1410.7 | 964.2 | 52/23 |
113 | 1423.3 | 972.8 | |
114 | 1435.9 | 981.5 | |
115 | 1448.5 | 990.1 | |
116 | 1461.1 | 998.7 | |
117 | 1473.7 | 1007.3 | |
118 | 1486.3 | 1015.9 | |
119 | 1498.9 | 1024.5 | |
120 | 1511.5 | 1033.1 | |
121 | 1524.1 | 1041.7 | 41/17 |
122 | 1536.7 | 1050.3 | 17/7 |
123 | 1549.3 | 1058.9 | |
124 | 1561.9 | 1067.5 | 37/15 |
125 | 1574.5 | 1076.2 | |
126 | 1587.1 | 1084.8 | 5/2 |
127 | 1599.7 | 1093.4 | |
128 | 1612.3 | 1102 | 33/13 |
129 | 1624.8 | 1110.6 | 23/9 |
130 | 1637.4 | 1119.2 | |
131 | 1650 | 1127.8 | |
132 | 1662.6 | 1136.4 | 47/18 |
133 | 1675.2 | 1145 | |
134 | 1687.8 | 1153.6 | |
135 | 1700.4 | 1162.3 | |
136 | 1713 | 1170.9 | |
137 | 1725.6 | 1179.5 | |
138 | 1738.2 | 1188.1 | |
139 | 1750.8 | 1196.7 | |
140 | 1763.4 | 1205.3 | |
141 | 1776 | 1213.9 | |
142 | 1788.6 | 1222.5 | |
143 | 1801.2 | 1231.1 | |
144 | 1813.8 | 1239.7 | |
145 | 1826.4 | 1248.3 | |
146 | 1839 | 1257 | 55/19 |
147 | 1851.6 | 1265.6 | |
148 | 1864.2 | 1274.2 | 44/15 |
149 | 1876.8 | 1282.8 | |
150 | 1889.4 | 1291.4 | |
151 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.41 | +0.00 | +5.78 | -2.66 | -3.41 | -5.77 | +2.38 | +0.00 | -6.06 | +5.27 | +5.78 |
Relative (%) | -27.0 | +0.0 | +45.9 | -21.1 | -27.0 | -45.8 | +18.9 | +0.0 | -48.1 | +41.9 | +45.9 | |
Steps (reduced) |
95 (95) |
151 (0) |
191 (40) |
221 (70) |
246 (95) |
267 (116) |
286 (135) |
302 (0) |
316 (14) |
330 (28) |
342 (40) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.76 | +3.42 | -2.66 | -1.03 | -5.22 | -3.41 | +3.76 | +3.13 | -5.77 | +1.87 | +0.48 |
Relative (%) | +45.8 | +27.2 | -21.1 | -8.2 | -41.4 | -27.0 | +29.8 | +24.8 | -45.8 | +14.8 | +3.8 | |
Steps (reduced) |
353 (51) |
363 (61) |
372 (70) |
381 (79) |
389 (87) |
397 (95) |
405 (103) |
412 (110) |
418 (116) |
425 (123) |
431 (129) |