5941edo
← 5940edo | 5941edo | 5942edo → |
As the zeta valley edo after 79edo, it approximates prime harmonics with very high errors. In particular, the 7th, 9th, 11th and 23rd harmonics are off by nearly half a step. In light of this, 5941edo can be seen as excelling in the 2.92.72.112.232 subgroup. Otherwise, it is strong in the 2.45.35.49.19.(31.51) subgroup.
Rather fittingly, it has a consistency limit of 3.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.0530 | +0.0859 | -0.1001 | +0.0961 | -0.0976 | -0.0631 | +0.0329 | +0.0774 | +0.0127 | +0.0489 | -0.0973 | -0.0302 |
Relative (%) | -26.2 | +42.5 | -49.6 | +47.6 | -48.3 | -31.2 | +16.3 | +38.3 | +6.3 | +24.2 | -48.2 | -15.0 | |
Steps (reduced) |
9416 (3475) |
13795 (1913) |
16678 (4796) |
18833 (1010) |
20552 (2729) |
21984 (4161) |
23211 (5388) |
24284 (520) |
25237 (1473) |
26095 (2331) |
26874 (3110) |
27589 (3825) |
Harmonic | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 | 49 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0431 | -0.0535 | +0.0242 | +0.0514 | -0.0142 | -0.0732 | +0.0859 | -0.0437 | -0.0887 | -0.0200 | +0.0379 | +0.0018 |
Relative (%) | +21.3 | -26.5 | +12.0 | +25.5 | -7.0 | -36.2 | +42.5 | -21.6 | -43.9 | -9.9 | +18.8 | +0.9 | |
Steps (reduced) |
28249 (4485) |
28861 (5097) |
29433 (5669) |
29969 (264) |
30473 (768) |
30949 (1244) |
31401 (1696) |
31829 (2124) |
32237 (2532) |
32627 (2922) |
33000 (3295) |
33357 (3652) |