414edo

Revision as of 21:58, 26 January 2022 by FloraC (talk | contribs) (+infobox and improve intro)
← 413edo 414edo 415edo →
Prime factorization 2 × 32 × 23
Step size 2.89855 ¢ 
Fifth 242\414 (701.449 ¢) (→ 121\207)
Semitones (A1:m2) 38:32 (110.1 ¢ : 92.75 ¢)
Consistency limit 17
Distinct consistency limit 17

The 414 equal divisions of the octave (414edo), or the 414(-tone) equal temperament (414tet, 414et) when viewed from a regular temperament perspective, is the equal division of the octave into 414 parts of about 2.90 cents each.

Theory

414edo is closely related to 207edo, but the patent vals differ on the mapping for 5. It is consistent to the 17-odd-limit, tempering out [-36 11 8 (submajor comma) and [1 -27 18 (ennealimma) in the 5-limit; 2401/2400, 4375/4374, and [-37 4 12 1 in the 7-limit; 3025/3024, 9801/9800, 41503/41472, and 1265625/1261568 in the 11-limit; 625/624, 729/728, 1575/1573, 2200/2197, and 26411/26364 in the 13-limit; 833/832, 1089/1088, 1225/1224, 1275/1274, and 1701/1700 in the 17-limit. It supports the 11-limit hemiennealimmal and the 13-limit quatracot.

Prime harmonics

Approximation of prime harmonics in 414edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.51 -0.81 -0.71 -0.59 +0.05 -0.61 +1.04 +0.71 -0.59 -0.11
Relative (%) +0.0 -17.4 -27.8 -24.5 -20.5 +1.8 -21.0 +35.8 +24.5 -20.4 -3.7
Steps
(reduced)
414
(0)
656
(242)
961
(133)
1162
(334)
1432
(190)
1532
(290)
1692
(36)
1759
(103)
1873
(217)
2011
(355)
2051
(395)

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5 [-36 11 8, [1 -27 18 [414 656 961]] +0.2222 0.1575 5.43
2.3.5.7 2401/2400, 4375/4374, [-36 11 8 [414 656 961 1162]] +0.2299 0.1371 4.73
2.3.5.7.11 2401/2400, 3025/3024, 4375/4374, 1366875/1362944 [414 656 961 1162 1432]] +0.2182 0.1248 4.30
2.3.5.7.11.13 625/624, 729/728, 1575/1573, 2200/2197, 2401/2400 [414 656 961 1162 1432 1532]] +0.1795 0.1431 4.94
2.3.5.7.11.13.17 625/624, 729/728, 833/832, 1089/1088, 1225/1224, 2200/2197 [414 656 961 1162 1432 1532 1692]] +0.1751 0.1329 4.58

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 125\414 362.31 10125/8192 Submajor (5-limit)
2 61\414 176.81 195/176 Quatracot
9 109\414
(17\414)
315.94
(49.28)
6/5
(36/35)
Ennealimmal
18 86\414
(6\414)
249.28
(17.39)
231/200
(99/98)
Hemiennealimmal
18 164\414
(3\414)
475.36
(8.70)
1053/800
(1287/1280)
Semihemiennealimmal