Ditonmic family
The ditonmic family of temperaments tempers out the ditonma (ratio: 1220703125/1207959552, monzo: [-27 -2 13⟩).
Ditonic
Named by Petr Pařízek in 2011[1], ditonic can be described as the 50 & 53 temperament. It splits ~8/5 in two for a generator, which happens to be an interval very close in size to the ditone, ~81/64. Note that the ditone itself is 52 generator steps away.
Subgroup: 2.3.5
Comma list: 1220703125/1207959552
Mapping: [⟨1 6 3], ⟨0 -13 -2]]
- CTE: ~2 = 1200.000, ~15625/12288 = 407.534
- error map: ⟨0.000 +0.099 -1.382]
- POTE: ~2 = 1200.000, ~15625/12288 = 407.574
- error map: ⟨0.000 -0.416 -1.462]
Optimal ET sequence: 3, …, 47, 50, 53, 474c, 527c, 580c, 633c, 686c, 739c, 792c, 845cc
Badness (Smith): 0.167086
Coditone
Subgroup: 2.3.5.7
Comma list: 225/224, 2125764/2100875
Mapping: [⟨1 6 3 13], ⟨0 -13 -2 -30]]
Wedgie: ⟨⟨ 13 2 30 -27 11 64 ]]
- CTE: ~2 = 1200.000, ~1225/972 = 407.642
- error map: ⟨0.000 -1.298 -1.597 +1.921]
- POTE: ~2 = 1200.000, ~1225/972 = 407.690
- error map: ⟨0.000 -1.921 -1.693 +0.483]
Optimal ET sequence: 3d, 50, 53, 103, 156
Badness (Smith): 0.064356
11-limit
Subgroup: 2.3.5.7.11
Comma list: 225/224, 385/384, 78408/78125
Mapping: [⟨1 6 3 13 -3], ⟨0 -13 -2 -30 19]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~1225/972 = 407.688
- POTE: ~2 = 1200.000, ~1225/972 = 407.741
Optimal ET sequence: 50, 53, 103
Badness (Smith): 0.044329
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 351/350, 385/384, 847/845
Mapping: [⟨1 6 3 13 -3 2], ⟨0 -13 -2 -30 19 5]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~325/256 = 407.691
- POTE: ~2 = 1200.000, ~325/256 = 407.736
Optimal ET sequence: 50, 53, 103
Badness (Smith): 0.024352
Coditonic
Subgroup: 2.3.5.7.11
Comma list: 99/98, 176/175, 6655/6561
Mapping: [⟨1 6 3 13 15], ⟨0 -13 -2 -30 -34]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~242/189 = 407.528
- POTE: ~2 = 1200.000, ~242/189 = 407.567
Optimal ET sequence: 3de, 50e, 53
Badness (Smith): 0.063876
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 99/98, 176/175, 325/324, 847/845
Mapping: [⟨1 6 3 13 15 20], ⟨0 -13 -2 -30 -34 -48]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~242/189 = 407.514
- POTE: ~2 = 1200.000, ~33/26 = 407.541
Optimal ET sequence: 3def, 50eff, 53
Badness (Smith): 0.043989
Diton
This extension is known as ditonic in Graham Breed's temperament finder.
Subgroup: 2.3.5.7
Comma list: 126/125, 8751645/8388608
Mapping: [⟨1 6 3 -4], ⟨0 -13 -2 20]]
Wedgie: ⟨⟨ 13 2 -20 -27 -68 -52 ]]
- CTE: ~2 = 1200.000, ~2625/2048 = 407.922
- error map: ⟨0.000 -4.939 -2.157 -10.388]
- POTE: ~2 = 1200.000, ~2625/2048 = 407.954
- error map: ⟨0.000 -5.353 -2.221 -9.751]
Optimal ET sequence: 3, 47, 50
Badness (Smith): 0.242101
11-limit
Subgroup: 2.3.5.7.11
Comma list: 126/125, 245/242, 2079/2048
Mapping: [⟨1 6 3 -4 -3], ⟨0 -13 -2 20 19]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~14/11 = 407.930
- POTE: ~2 = 1200.000, ~14/11 = 407.892
Optimal ET sequence: 3, 47, 50
Badness (Smith): 0.100884
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 126/125, 245/242, 1287/1280
Mapping: [⟨1 6 3 -4 -3 2], ⟨0 -13 -2 20 19 5]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~14/11 = 407.933
- POTE: ~2 = 1200.000, ~14/11 = 407.887
Optimal ET sequence: 3, 47, 50
Badness (Smith): 0.054997