2L 5s

Revision as of 05:41, 1 August 2024 by Ganaram inukshuk (talk | contribs) (Clean up text surrounding templates)
↖ 1L 4s ↑ 2L 4s 3L 4s ↗
← 1L 5s 2L 5s 3L 5s →
↙ 1L 6s ↓ 2L 6s 3L 6s ↘
┌╥┬┬╥┬┬┬┐
│║││║││││
│││││││││
└┴┴┴┴┴┴┴┘
Scale structure
Step pattern LssLsss
sssLssL
Equave 2/1 (1200.0 ¢)
Period 2/1 (1200.0 ¢)
Generator size
Bright 3\7 to 1\2 (514.3 ¢ to 600.0 ¢)
Dark 1\2 to 4\7 (600.0 ¢ to 685.7 ¢)
TAMNAMS information
Name antidiatonic
Prefix pel-
Abbrev. pel
Related MOS scales
Parent 2L 3s
Sister 5L 2s
Daughters 7L 2s, 2L 7s
Neutralized 4L 3s
2-Flought 9L 5s, 2L 12s
Equal tunings
Equalized (L:s = 1:1) 3\7 (514.3 ¢)
Supersoft (L:s = 4:3) 10\23 (521.7 ¢)
Soft (L:s = 3:2) 7\16 (525.0 ¢)
Semisoft (L:s = 5:3) 11\25 (528.0 ¢)
Basic (L:s = 2:1) 4\9 (533.3 ¢)
Semihard (L:s = 5:2) 9\20 (540.0 ¢)
Hard (L:s = 3:1) 5\11 (545.5 ¢)
Superhard (L:s = 4:1) 6\13 (553.8 ¢)
Collapsed (L:s = 1:0) 1\2 (600.0 ¢)

2L 5s, named antidiatonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 2 large steps and 5 small steps, repeating every octave. Generators that produce this scale range from 514.3 ¢ to 600 ¢, or from 600 ¢ to 685.7 ¢. Antidiatonic is similar to diatonic except interval classes are flipped. For example, there are natural, harmonic, and melodic major scales instead of minor scales, and its locrian scale, called "antilocrian", has an augmented fifth instead of a diminished fifth. The flatter the fifth, the less this scale resembles diatonic.

The most well-known forms of this scale are produced by mavila temperament, with fifths sharp enough to resemble diatonic. Other temperaments that produce this scale include score, casablanca, and triton, whose fifths are so flat that they cannot be interpreted as a diatonic 5th, flattened or otherwise.

Name

TAMNAMS suggests the temperament-agnostic name antidiatonic for this scale, adopted from the common use of the term to refer to diatonic (5L 2s) but with the large and small steps switched.

Intervals

This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals of 2L 5s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-pelstep Perfect 0-pelstep P0pels 0 0.0 ¢
1-pelstep Minor 1-pelstep m1pels s 0.0 ¢ to 171.4 ¢
Major 1-pelstep M1pels L 171.4 ¢ to 600.0 ¢
2-pelstep Minor 2-pelstep m2pels 2s 0.0 ¢ to 342.9 ¢
Major 2-pelstep M2pels L + s 342.9 ¢ to 600.0 ¢
3-pelstep Diminished 3-pelstep d3pels 3s 0.0 ¢ to 514.3 ¢
Perfect 3-pelstep P3pels L + 2s 514.3 ¢ to 600.0 ¢
4-pelstep Perfect 4-pelstep P4pels L + 3s 600.0 ¢ to 685.7 ¢
Augmented 4-pelstep A4pels 2L + 2s 685.7 ¢ to 1200.0 ¢
5-pelstep Minor 5-pelstep m5pels L + 4s 600.0 ¢ to 857.1 ¢
Major 5-pelstep M5pels 2L + 3s 857.1 ¢ to 1200.0 ¢
6-pelstep Minor 6-pelstep m6pels L + 5s 600.0 ¢ to 1028.6 ¢
Major 6-pelstep M6pels 2L + 4s 1028.6 ¢ to 1200.0 ¢
7-pelstep Perfect 7-pelstep P7pels 2L + 5s 1200.0 ¢

Notation

The most common way of notating this scale, particularly when working with mavila temperament, is to use the same note names and accidentals as that of diatonic (CDEFGAB, #, and b), but read as antidiatonic instead. There are, however, two ways of notating accidentals:

  • Harmonic antidiatonic notation, where the sharps and flats of diatonic switch roles: sharps flatten and flats sharpen.
  • Melodic antidiatonic notation, where the meaning of sharps and flats is preserved: sharps sharpen and flats flatten.

Under harmonic antidiatonic notation, the basic gamut (for D anti-dorian) is the following: D, E, Eb/F#, F, G, A, B, Bb/C#, C, D.

Under melodic antidiatonic notation, the basic gamut is the following: D, E, E#/Fb, F, G, A, B, B#/Cb, C, D.

Theory

Low harmonic entropy scales

There is one notable harmonic entropy minimum: Liese/triton, in which the generator is 7/5 (582.5¢) and three of them make a 3/1 (1902¢).

Temperament interpretations

2L 5s has several rank-2 temperament interpretations, such as:

  • Mavila, with generators around 679.8¢.
  • Casablanca, with generators around 657.8¢.
  • Liese, with generators around 632.4¢.

Tuning ranges

Simple tunings

The simplest tunings are those with step ratios 2:1, 3:1, and 3:2, producing 9edo, 11edo, and 16edo.

  MOS degrees is deprecated. Please use Template:MOS tunings instead.
Scale degree of 2L 5s
Scale degree 9edo (Basic, L:s = 2:1) 11edo (Hard, L:s = 3:1) 16edo (Soft, L:s = 3:2) Approx. JI Ratios
Steps Cents Steps Cents Steps Cents
Perfect 0-peldegree (unison) 0 0 0 0 0 0 1/1 (exact)
Minor 1-peldegree 1 133.3 1 109.1 2 150
Major 1-peldegree 2 266.7 3 327.3 3 225
Minor 2-peldegree 2 266.7 2 218.2 4 300
Major 2-peldegree 3 400 4 436.4 5 375
Diminished 3-peldegree 3 400 3 327.3 6 450
Perfect 3-peldegree 4 533.3 5 545.5 7 525
Perfect 4-peldegree 5 666.7 6 654.5 9 675
Augmented 4-peldegree 6 800 8 872.7 10 750
Minor 5-peldegree 6 800 7 763.6 11 825
Major 5-peldegree 7 933.3 9 981.8 12 900
Minor 6-peldegree 7 933.3 8 872.7 13 975
Major 6-peldegree 8 1066.7 10 1090.9 14 1050
Perfect 7-peldegree (octave) 9 1200 11 1200 16 1200 2/1 (exact)

Soft-of-basic tunings

Much of the range for soft-of-basic antidiatonic tunings (1:1 to 2:1) corresponds to mavila temperament. Edos include 9edo (not shown), 16edo, and 23edo.

  MOS degrees is deprecated. Please use Template:MOS tunings instead.
Scale degree of 2L 5s
Scale degree 16edo (Soft, L:s = 3:2) 23edo (Supersoft, L:s = 4:3) Approx. JI Ratios
Steps Cents Steps Cents
Perfect 0-peldegree (unison) 0 0 0 0 1/1 (exact)
Minor 1-peldegree 2 150 3 156.5
Major 1-peldegree 3 225 4 208.7
Minor 2-peldegree 4 300 6 313
Major 2-peldegree 5 375 7 365.2
Diminished 3-peldegree 6 450 9 469.6
Perfect 3-peldegree 7 525 10 521.7
Perfect 4-peldegree 9 675 13 678.3
Augmented 4-peldegree 10 750 14 730.4
Minor 5-peldegree 11 825 16 834.8
Major 5-peldegree 12 900 17 887
Minor 6-peldegree 13 975 19 991.3
Major 6-peldegree 14 1050 20 1043.5
Perfect 7-peldegree (octave) 16 1200 23 1200 2/1 (exact)

Hypohard tunings

The range of hard-of-basic tunings correspond to temperaments that have significantly flattened antidiatonic 5ths, such as score and casablanca. 20edo and 31edo represent these two temperaments quite well.

  MOS degrees is deprecated. Please use Template:MOS tunings instead.
Scale degree of 2L 5s
Scale degree 20edo (Semihard, L:s = 5:2) 31edo (L:s = 8:3) Approx. JI Ratios
Steps Cents Steps Cents
Perfect 0-peldegree (unison) 0 0 0 0 1/1 (exact)
Minor 1-peldegree 2 120 3 116.1
Major 1-peldegree 5 300 8 309.7
Minor 2-peldegree 4 240 6 232.3
Major 2-peldegree 7 420 11 425.8
Diminished 3-peldegree 6 360 9 348.4
Perfect 3-peldegree 9 540 14 541.9
Perfect 4-peldegree 11 660 17 658.1
Augmented 4-peldegree 14 840 22 851.6
Minor 5-peldegree 13 780 20 774.2
Major 5-peldegree 16 960 25 967.7
Minor 6-peldegree 15 900 23 890.3
Major 6-peldegree 18 1080 28 1083.9
Perfect 7-peldegree (octave) 20 1200 31 1200 2/1 (exact)

Ultrahard tunings

Ultrahard tunings, particularly with the harder end of the spectrum, correspond to liese temperament, represent by edos such as 17edo 19edo, and larger edos such as 55edo.

  MOS degrees is deprecated. Please use Template:MOS tunings instead.
Scale degree of 2L 5s
Scale degree 17edo (L:s = 6:1) 19edo (L:s = 7:1) 55edo (L:s = 20:3) Approx. JI Ratios
Steps Cents Steps Cents Steps Cents
Perfect 0-peldegree (unison) 0 0 0 0 0 0 1/1 (exact)
Minor 1-peldegree 1 70.6 1 63.2 3 65.5
Major 1-peldegree 6 423.5 7 442.1 20 436.4
Minor 2-peldegree 2 141.2 2 126.3 6 130.9
Major 2-peldegree 7 494.1 8 505.3 23 501.8
Diminished 3-peldegree 3 211.8 3 189.5 9 196.4
Perfect 3-peldegree 8 564.7 9 568.4 26 567.3
Perfect 4-peldegree 9 635.3 10 631.6 29 632.7
Augmented 4-peldegree 14 988.2 16 1010.5 46 1003.6
Minor 5-peldegree 10 705.9 11 694.7 32 698.2
Major 5-peldegree 15 1058.8 17 1073.7 49 1069.1
Minor 6-peldegree 11 776.5 12 757.9 35 763.6
Major 6-peldegree 16 1129.4 18 1136.8 52 1134.5
Perfect 7-peldegree (octave) 17 1200 19 1200 55 1200 2/1 (exact)

Modes

Scale degrees of the modes of 2L 5s
UDP Cyclic
order
Step
pattern
Scale degree (peldegree)
0 1 2 3 4 5 6 7
6|0 1 LssLsss Perf. Maj. Maj. Perf. Aug. Maj. Maj. Perf.
5|1 4 LsssLss Perf. Maj. Maj. Perf. Perf. Maj. Maj. Perf.
4|2 7 sLssLss Perf. Min. Maj. Perf. Perf. Maj. Maj. Perf.
3|3 3 sLsssLs Perf. Min. Maj. Perf. Perf. Min. Maj. Perf.
2|4 6 ssLssLs Perf. Min. Min. Perf. Perf. Min. Maj. Perf.
1|5 2 ssLsssL Perf. Min. Min. Perf. Perf. Min. Min. Perf.
0|6 5 sssLssL Perf. Min. Min. Dim. Perf. Min. Min. Perf.

Proposed Names

Modes of antidiatonic are usually named as "anti-" combined with the corresponding mode of the diatonic scale, where anti-locrian is the brightest mode and anti-lydian is the darkest mode. CompactStar also gave original names based on regions of France to mirror how modes of the diatonic scale are named on regions of Greece and Turkey.

Modes of 2L 5s
UDP Cyclic
order
Step
pattern
6|0 1 LssLsss
5|1 4 LsssLss
4|2 7 sLssLss
3|3 3 sLsssLs
2|4 6 ssLssLs
1|5 2 ssLsssL
0|6 5 sssLssL

Scale tree

Template:Scale tree