337edo

From Xenharmonic Wiki
Revision as of 13:49, 6 November 2023 by Francium (talk | contribs) (Created page with "{{Infobox ET}} {{EDO intro|337}} == Theory == 337et tempers out 16875/16807, 1280000000/1275989841, 14348907/14336000, 5250987/5242880, 420175/419904 and 201768035/201...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
← 336edo 337edo 338edo →
Prime factorization 337 (prime)
Step size 3.56083 ¢ 
Fifth 197\337 (701.484 ¢)
Semitones (A1:m2) 31:26 (110.4 ¢ : 92.58 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

337et tempers out 16875/16807, 1280000000/1275989841, 14348907/14336000, 5250987/5242880, 420175/419904 and 201768035/201326592 in the 7-limit. It provides the optimal patent val for the kleirtismic temperament.

Odd harmonics

Approximation of odd harmonics in 337edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.47 -1.74 -0.28 -0.94 +0.61 -0.17 +1.35 -1.69 +1.60 -0.75 -1.57
Relative (%) -13.2 -49.0 -7.9 -26.5 +17.2 -4.8 +37.8 -47.5 +44.8 -21.1 -44.0
Steps
(reduced)
534
(197)
782
(108)
946
(272)
1068
(57)
1166
(155)
1247
(236)
1317
(306)
1377
(29)
1432
(84)
1480
(132)
1524
(176)

Subsets and supersets

337edo is the 68th prime EDO.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-534 337 337 534] 0.1487 0.1487 4.18
2.3.5 15625/15552, [-88 57 -1 337 534 782] 0.3495 0.3089 8.67
2.3.5.7 15625/15552, 16875/16807, 7381125/7340032 337 534 782 946] 0.2870 0.2886 8.10

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 67\337 238.58 147/128 Tokko
1 89\337 316.91 6/5 Hanson