379edo

From Xenharmonic Wiki
Revision as of 13:24, 22 March 2023 by Francium (talk | contribs) (Created page with "{{Infobox ET}} {{EDO intro|379}} It is the 75th prime edo. == Theory == 379 tempers out 4096000/4084101, 5120/5103 and 2401/2400 in the 7-limit; 2097152/2096325, 1...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
← 378edo 379edo 380edo →
Prime factorization 379 (prime)
Step size 3.16623 ¢ 
Fifth 222\379 (702.902 ¢)
Semitones (A1:m2) 38:27 (120.3 ¢ : 85.49 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro It is the 75th prime edo.

Theory

379 tempers out 4096000/4084101, 5120/5103 and 2401/2400 in the 7-limit; 2097152/2096325, 1953125/1951488, 6250/6237, 42875/42768, 5767168/5764801, 180224/180075, 5632/5625, 537109375/536870912, 422576/421875, 9453125/9437184, 166375/165888, 67110351/67108864, 3294225/3294172, 43923/43904, 102487/102400, 20614528/20588575, 644204/643125 and 781258401/781250000 in the 11-limit. It provides the optimal patent val for the subneutral temperament.

Approximation of odd harmonics in 379edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.95 -0.03 +0.04 -1.27 -0.39 -1.48 +0.91 -0.47 +0.11 +0.99 -1.36
Relative (%) +29.9 -1.1 +1.2 -40.2 -12.5 -46.7 +28.8 -14.8 +3.5 +31.2 -43.0
Steps
(reduced)
601
(222)
880
(122)
1064
(306)
1201
(64)
1311
(174)
1402
(265)
1481
(344)
1549
(33)
1610
(94)
1665
(149)
1714
(198)

Scales