7edf

From Xenharmonic Wiki
Jump to navigation Jump to search

Division of the just perfect fifth into 7 equal parts (7EDF) is related to 12 edo, but with the 3/2 rather than the 2/1 being just. The octave is about 3.3514 cents stretched and the step size is about 100.2793 cents. The patent val has a generally sharp tendency for harmonics up to 21, with the exception for 11 and 13.

Lookalikes: 12edo, 19ed3, 31ed6

Intervals

ed233\420-3.5¢ ed31\54 ed121/81 (~ed11\19) ed3/2 Pyrite ed122/81 (~ed13\22) ed34\57 ed37\60+3.5¢
(~ed17\29) (~ed10\17)
1 94.602-95.102 98.4127 99.2594 100.2793 100.5194 100.8365 101.295 102.2556 105.7143-106.2143
2 189.2041-190.2041 196.8254 198.5188 200.5586 201.0389 201.673 202.5899 204.5113 211.4286-212.4286
3 283.8061-285.3061 295.238 297.7782 300.8379 301.5583 302.5095 303.8849 306.7669 317.1429-318.6429
4 378.4082-380.4082 393.6508 397.03765 401.1171 402.0777 403.346 405.1799 409.0226 422.8571-424.8571
5 473.0102-475.5102 492.0635 496.2971 501.3964 502.5972 504.1825 506.4749 511.2781 528.5714-531.0714
6 567.6122-570.6122 590.476 595.5565 601.6757 603.1166 605.019 607.7698 613.5338 634.2857-637.2857
7 662.2143-665.7143 688.8889 694.8158 701.955 703.636 705.85545 709.0648 715.7895 740-743.5
8 756.8163-760.8163 787.3016 794.0753 802.2343 804.1555 806.6919 810.3598 818.0451 845.7143-849.7143
9 851.4184-855.9184 885.7143 893.3347 902.5136 904.6749 907.5284 911.6547 920.30075 951.4286-955.9286
10 946.0204-951.0204 984.127 992.5941 1002.7929 1005.1943 1008.3649 1012.9497 1022.5564 1057.1429-1062.1429
11 1040.6224-1046.1224 1082.5397 1091.8535 1103.0721 1105.7138 1109.2014 1114.2447 1124.812 1162.8571-1167.3571
12 1135.2245-1141.2245 1180.9524 1191.1129 1203.3514 1206.2332 1210.0379 1215.5397 1227.0677 1268.5714-1274.5714
13 1229.8265-1236.3265 1279.3651 1290.37235 1303.6307 1306.7526 1310.8744 1316.8346 1329.3233 1374.2857-1380.7857
14 1324.4286-1331.4286 1377.7778 1389.6318 1403.91 1407.2721 1411.7109 1418.1296 1431.57895 1480-1487