7edf
Division of the just perfect fifth into 7 equal parts (7EDF) is related to 12 edo, but with the 3/2 rather than the 2/1 being just. The octave is about 3.3514 cents stretched and the step size is about 100.2793 cents. The patent val has a generally sharp tendency for harmonics up to 21, with the exception for 11 and 13.
Lookalikes: 12edo, 19ed3, 31ed6
Intervals
ed31\54 | ed121/81 (~ed11\19) | ed3/2 | Pyrite | ed122/81 (~ed13\22) | ed34\57 | ||
---|---|---|---|---|---|---|---|
(~ed17\29) | (~ed10\17) | ||||||
1 | 98.4127 | 99.2594 | 100.2793 | 100.5194 | 100.8365 | 101.295 | 102.2556 |
2 | 196.8254 | 198.5188 | 200.5586 | 201.0389 | 201.673 | 202.5899 | 204.5113 |
3 | 295.238 | 297.7782 | 300.8379 | 301.5583 | 302.5095 | 303.8849 | 306.7669 |
4 | 393.6508 | 397.03765 | 401.1171 | 402.0777 | 403.346 | 405.1799 | 409.0226 |
5 | 492.0635 | 496.2971 | 501.3964 | 502.5972 | 504.1825 | 506.4749 | 511.2781 |
6 | 590.476 | 595.5565 | 601.6757 | 603.1166 | 605.019 | 607.7698 | 613.5338 |
7 | 688.8889 | 694.8158 | 701.955 | 703.636 | 705.85545 | 709.0648 | 715.7895 |
8 | 787.3016 | 794.0753 | 802.2343 | 804.1555 | 806.6919 | 810.3598 | 818.0451 |
9 | 885.7143 | 893.3347 | 902.5136 | 904.6749 | 907.5284 | 911.6547 | 920.30075 |
10 | 984.127 | 992.5941 | 1002.7929 | 1005.1943 | 1008.3649 | 1012.9497 | 1022.5564 |
11 | 1082.5397 | 1091.8535 | 1103.0721 | 1105.7138 | 1109.2014 | 1114.2447 | 1124.812 |
12 | 1180.9524 | 1191.1129 | 1203.3514 | 1206.2332 | 1210.0379 | 1215.5397 | 1227.0677 |
13 | 1279.3651 | 1290.37235 | 1303.6307 | 1306.7526 | 1310.8744 | 1316.8346 | 1329.3233 |
14 | 1377.7778 | 1389.632 | 1403.91 | 1407.2721 | 1411.7109 | 1418.1296 | 1431.57895 |