Lumatone mapping for 18edo

From Xenharmonic Wiki
Revision as of 22:33, 17 August 2025 by Yourmusic Productions (talk | contribs) (Add music.)
Jump to navigation Jump to search

There are many conceivable ways to map 18edo onto the onto the Lumatone keyboard. However, as both of its fifths are about as far away from just as possible, neither the sharp or the flat versions of the Standard Lumatone mapping for Pythagorean work particularly well. Only two generators work at all to produce single-period mos scales.

Wide fifth

7\18 produces a 5L 3s-based Jankó mapping. Bryan Deister uses this mapping in Waltz in 18edo.

0
3
1
4
7
10
13
17
2
5
8
11
14
17
2
0
3
6
9
12
15
0
3
6
9
12
16
1
4
7
10
13
16
1
4
7
10
13
16
1
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
5
8
11
14
17
2
5
8
11
14
17
2
5
8
15
0
3
6
9
12
15
0
3
6
9
4
7
10
13
16
1
4
7
14
17
2
5
8
3
6


This can be compressed down to a 2L 1s mapping that is useful for maximising range.

16
5
2
9
16
5
12
17
6
13
2
9
16
5
12
3
10
17
6
13
2
9
16
5
12
1
0
7
14
3
10
17
6
13
2
9
16
5
12
1
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
15
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
15
13
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
15
4
13
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
9
16
5
12
1
8
15
4
11
0
7
14
3
10
16
5
12
1
8
15
4
11
0
7
14
16
5
12
1
8
15
4
11
5
12
1
8
15
5
12

Flat neutral thirds

5\18 produces a 4L 3s-based Jankó mapping.

0
3
2
5
8
11
14
1
4
7
10
13
16
1
4
3
6
9
12
15
0
3
6
9
12
15
2
5
8
11
14
17
2
5
8
11
14
17
2
5
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
1
4
7
10
13
16
1
4
7
10
13
16
1
4
12
15
0
3
6
9
12
15
0
3
6
2
5
8
11
14
17
2
5
13
16
1
4
7
3
6


This can also be compressed down to a 3L 1s mapping that is useful if you want to keep octaves as close to horizontal as possible.

16
3
1
6
11
16
3
17
4
9
14
1
6
11
16
2
7
12
17
4
9
14
1
6
11
16
0
5
10
15
2
7
12
17
4
9
14
1
6
11
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
6
11
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
6
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
6
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
5
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
5
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
0
5
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
0
5
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
6
13
0
5
10
15
2
7
12
17
4
9
8
13
0
5
10
15
2
7
8
13
0
5
10
3
8


ViewTalkEditLumatone mappings 
15edo16edo17edoLumatone mapping for 18edo19edo20edo21edo