Lumatone mapping for 21edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are several conceivable ways to map 21edo onto the Lumatone keyboard. However, as it has multiple small rings of 5ths, the Standard Lumatone mapping for Pythagorean is not one of them. The Whitewood mapping is the one that functions in the closest way to the familiar diatonic scale.

Lumatone.svg
17
20
19
1
4
7
10
18
0
3
6
9
12
15
18
20
2
5
8
11
14
17
20
2
5
8
19
1
4
7
10
13
16
19
1
4
7
10
13
16
0
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
20
2
5
8
11
14
17
20
2
5
8
11
14
17
20
2
5
8
11
14
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
0
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
9
12
5
8
11
14
17
20
2
5
8
11
14
17
20
2
5
8
11
14
17
20
2
5
8
11
14
17
20
2
13
16
19
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
11
14
17
20
2
5
8
11
14
17
20
2
5
8
11
14
17
20
2
5
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
7
9
12
15
18
0
3
6
9
12
15
18
0
3
6
20
2
5
8
11
14
17
20
2
5
8
7
10
13
16
19
1
4
7
18
0
3
6
9
5
8

Since the 7th harmonic is the lowest one that is accurately tuned, the gorgo mapping works well for creating consonant combinations of notes, and also has a wider range.

Lumatone.svg
3
7
8
12
16
20
3
9
13
17
0
4
8
12
16
14
18
1
5
9
13
17
0
4
8
12
15
19
2
6
10
14
18
1
5
9
13
17
0
4
20
3
7
11
15
19
2
6
10
14
18
1
5
9
13
17
0
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
1
5
9
13
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
1
5
9
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
1
15
19
2
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
7
11
15
19
2
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
3
7
11
15
19
2
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
16
20
3
7
11
15
19
2
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
1
5
9
13
4
8
12
16
20
3
7
11
15
19
2
6
10
14
0
4
8
12
16
20
3
7
11
15
19
13
17
0
4
8
12
16
20
9
13
17
0
4
1
5


18edo19edo20edoLumatone mapping for 21edo22edo23edo24edo